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ABSTRACT

We first consider questions on the distribution of the primes. Using the recent ad-

vancement towards the Prime k-tuple Conjecture by Maynard and Tao, we show how to

produce infinitely many strings of consecutive primes satisfying specified congruence condi-

tions. We answer an old question of Erdős and Turán by producing strings of consecutive

primes whose successive gaps form an increasing (respectively decreasing) sequence. We also

show that such strings exist whose successive gaps follow a certain divisibility pattern. Fi-

nally, for any coprime integers a and D ≥ 1, we refine a theorem of D. Shiu and find strings

of consecutive primes of arbitrary length in the congruence class a mod D. These results

were proved jointly with William D. Banks and Tristan Freiberg.

We next consider the vertical distribution of the nontrivial zeros of certain Dedekind

zeta-functions. In particular, let K be a quadratic number field, and let ζK(s) denote the

Dedekind zeta-function attached to K. Using the mixed second moments of derivatives of

ζK(s) on the critical line, we prove the existence of gaps between consecutive zeros of ζK(s)

on the critical line which are at least
√

6 = 2.44949 . . . times the average spacing.

Finally, assuming the Generalized Riemann Hypothesis and some standard conjec-

tures, we prove upper bounds for moments of arbitrary products of automorphic L-functions

and for Dedekind zeta-functions of Galois number fields on the critical line. As an appli-

cation, we use these bounds to estimate the variance of the coefficients of these zeta- and

L-functions in short intervals. We also prove upper bounds for moments of products of

central values of automorphic L-functions twisted by quadratic Dirichlet characters and av-

eraged over fundamental discriminants. These results were proved jointly with Micah B.

Milinovich.
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1 INTRODUCTION

Prime numbers are the most basic objects in mathematics. They also are among

the most mysterious, for after centuries of study, the structure of the set of prime numbers

is still not well understood. Describing the distribution of primes is at the heart of much

mathematics...

– Andrew Granville [36]

1.1 Primes in Tuples

Let p denote a prime. Twin primes are pairs of primes of the form (p, p+2); examples

include (3, 5), (11, 13), and (41, 43). The Twin Prime Conjectures states that there are

infinitely many such pairs of primes, but this is an open question. To date, the largest

known twin primes are

(3756801695685 · 2666,669 − 1, 3756801695685 · 2666,669 + 1).

In 1849, de Polignac [26] made the more general conjecture that for every natural

number n, there are infinitely many pairs of primes of the form (p, p + 2n). Notice that

the Twin Prime Conjecture is a special case of de Polignac’s Conjecture. In April 2013,

Zhang [97] proved that there are infinitely pairs of primes that are at most 70 million apart.

During the summer of 2013, the constant 70 million was reduced via the online, collaborative

polymath8 project (see [74, 75]) using ideas of Zhang and, subsequently, of Maynard [62] and

1



Tao1. As of June 20, 2014, the best unconditional result attained is that there are infinitely

many pairs of primes at most 246 apart.

There are many other interesting questions concerning the distribution of the primes.

For example, in 1948 Erdős and Turán [29] asked the following question.

Question. Let {pn} denote the sequence of primes and k be a natural number. Can the

inequalities

pn+1 − pn < pn+2 − pn+1 < · · · < pn+k − pn+k−1

have infinitely many solutions for every fixed k?

As a consequence of a recent result of Maynard and Tao (described below), William

D. Banks, Tristan Freiberg, and I have answered this question in the affirmative.

In general, one may consider a k-tuple of linear forms in Z[x] and inquire as to whether

or not the tuple can represent primes infinitely often. For example, consider the 3-tuple

{x, x+ 2, x+ 4}.

The choice of x = 3 produces the prime triple {3, 5, 7}. The 3-tuple {x, x+2, x+4} cannot,

however, represent primes for infinitely many integer values of x since for every x∈N, one of

the entries in the tuple is always divisible by 3. In order to avoid such an impediment when

searching for k-tuples which represent primes infinitely often, we introduce the following

notion.

Definition 1.1.1. A k-tuple of linear forms in Z[x], denoted by

H(x) := {gjx+ hj}kj=1,

1In [62], Maynard writes “Terence Tao (private communication) has independently proven Theorem 1.1
(with a slightly weaker bound) at much the same time.”
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is said to be admissible if the associated polynomial fH(x) :=
∏

1≤j≤k(gjx+ hj) has no fixed

prime divisor, that is, if the inequality

#{n mod p : fH(n) ≡ 0 mod p} < p

holds for every prime number p.

The results given in Section 1.1.1 of this introduction require the entries of the ad-

missible k-tuples to be distinct and positive for large values of k. To this end, we consider

k-tuples for which

g1, . . . , gk > 0 and
∏

1≤i<j≤k

(gihj − gjhi) 6= 0. (1.1.1)

One form of the Prime k-tuple Conjecture asserts that if H(x) is admissible and satisfies

(1.1.1), then

H(n)={gjn+ hj}kj=1

is a k-tuple of primes for infinitely many n ∈ N. In November of 2013, Maynard [62] and

Tao came very close to proving this form of the Prime k-tuple Conjecture. The following

formulation of their remarkable theorem has been given by Granville [37, Theorem 6.2].

Maynard–Tao Theorem. Let {gjx + hj}kj=1 be an admissible k-tuple satisfying (1.1.1).

For any natural number m ≥ 2, there is a number km, depending only on m, such that for

every integer k ≥ km, the k-tuple {gjn+hj}kj=1 contains m primes for infinitely many n∈N.

Moreover, one can take km to be any number such that km log km > e8m+4.

For a thorough overview of these problems on gaps between primes and the ideas of

Zhang and Maynard, we refer the reader to Granville’s survey article [37].

3



1.1 Consecutive Primes in Tuples

The following theorem establishes the existence of m-tuples that infinitely often repre-

sent strings of consecutive prime numbers. This theorem and the three succeeding corollaries

were proved in collaboration with William D. Banks and Tristan Freiberg. (See [4].)

Theorem 1.1.2. Let m, k ∈ N with m ≥ 2 and k ≥ km, where km log km > e8m+4, as

in the Maynard–Tao Theorem. Let b1, . . . , bk be distinct integers such that {x + bj}kj=1 is

admissible, and let g be any positive integer coprime with b1 · · · bk. Then, for some subset

{h1, . . . , hm} ⊆ {b1, . . . , bk}, there are infinitely many n∈N such that gn + h1, . . . , gn + hm

are consecutive primes.

Theorem 1.1.2 has various applications to the study of gaps between consecutive

primes. In order to state our results more easily, let us call a sequence (δj)
m
j=1 of positive

integers a run of consecutive prime gaps if

δj := dr+j := pr+j+1 − pr+j (1 ≤ j ≤ m)

for some natural number r, where pn denotes the nth prime. The following corollary of

Theorem 1.1.2 answers an old question of Erdős and Turán [29] (see also Erdős [28] and

Guy [38, A11]).

Corollary 1.1.3. For every natural number m ≥ 2, there are infinitely many runs (δj)
m
j=1

of consecutive prime gaps with δ1 < · · · < δm and infinitely many runs with δ1 > · · · > δm.

In Chapter 2, we prove Corollary 1.1.3 by constructing infinitely many runs (δj)
m
j=1

of consecutive prime gaps with

δ1 + · · ·+ δj−1 < δj (2 ≤ j ≤ m),

4



and infinitely many runs with

δj > δj+1 + · · ·+ δm (1 ≤ j ≤ m− 1).

Using a similar argument, we can also impose a divisibility requirement among gaps

between consecutive primes.

Corollary 1.1.4. For every natural number m ≥ 2 there exist infinitely many runs (δj)
m
j=1

of consecutive prime gaps such that δj | δj+1 for 1 ≤ j ≤ m − 1, and infinitely many runs

for which δj+1 | δj for 1 ≤ j ≤ m− 1.

As in the previous corollary, we can actually prove a bit more. Indeed, in the proof of

Corollary 1.1.4 given in Chapter 2, we construct infinitely many runs (δj)
m
j=1 of consecutive

prime gaps with

δ1 · · · δj−1 | δj

for 2 ≤ j ≤ m and infinitely many runs with

δmδm−1 · · · δj+1 | δj

for 1 ≤ j ≤ m− 1.

In 1920, Chowla conjectured that for D ≥ 3 and (a,D) = 1, there are infinitely many

pairs of consecutive primes pr and pr+1 with

pr ≡ pr+1 ≡ a mod D.

(See also [38, A4].) In 1997, D. Shiu [83] proved this conjecture for all a and D with

(a,D) = 1. Moreover, he proved the following theorem on consecutive primes in a given

congruence class.
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Theorem (D. Shiu). Let a and D be coprime integers. For every natural number m ≥ 2,

there are infinitely many r∈N such that

pr+1 ≡ pr+2 ≡ · · · ≡ pr+m ≡ a mod D.

Our final application of Theorem 1.1.2 is the following extension of Shiu’s theorem.

Corollary 1.1.5. Let a and D be coprime integers. For every natural number m ≥ 2, there

are infinitely many r∈N such that

pr+1 ≡ pr+2 ≡ · · · ≡ pr+m ≡ a mod D

and pr+m − pr+1 ≤ Cm, where Cm is a constant depending on m and D.

For infinitely many n ∈ N, let {Dn + h1, . . . , Dn + hm} be the string of consecutive

primes guaranteed by Theorem 1.1.2. Then in our proof of Corollary 1.1.5, we show that

Cm = hm − h1.

1.2 The Prime Number Theorem and the Riemann Zeta-function

The Riemann zeta-function is a riddle par excellence. It is natural to fall in love with

such a riddle, and then get disappointed by seeing that not much progress is to be hoped for

quickly.

– Cem Yıldırım [94]

In 1737, Euler proved that the sum of the reciprocals of the primes diverges. A key

component in this proof was his discovery that, for all real s > 1,

∞∑
n=0

1

ns
=
∏
p

p prime

(
1− 1

ps

)−1

. (1.2.1)

6



The above sum is called a Dirichlet series, and the product is called an Euler product. Note

that the infinitude of primes is a consequence of this equality. To study the distribution of

the primes, we consider the prime counting function

π(x) :=
∑
p≤x

1.

Gauss [31] and Legendre [57] independently conjectured the asymptotic behavior of

π(x) as x grows arbitrarily large. Their conjectures imply that the ratio

π(x)

x/ log x

approaches 1 as x tends to infinity. In 1896, Hadamard [39] and de la Vallée Poussin [90]

independently proved this conjecture, known as the Prime Number Theorem. The analytic

proof of this theorem depends on the work of Riemann [77], who nearly 40 years earlier, had

the great insight to consider the variable s to be a complex number in the Dirichet series

and Euler product given in (1.2.1).

Definition 1.2.1. Let s = σ+ it. The Riemann zeta-function is defined in the half-plane

<(s) > 1 by either the Dirichlet series or the Euler product

ζ(s) :=
∞∑
n=1

1

ns
=
∏
p

p prime

(
1− 1

ps

)−1

.

The Riemann zeta-function is defined in the rest of the complex plane by analytic continua-

tion except for a simple pole at s = 1. Let Γ(n) denote the gamma function. For all s ∈ C,

the function

Φ(s) := π−s/2Γ
(s

2

)
ζ(s),

satisfies the functional equation

Φ(s) = Φ(1−s).

7



By definition, |ζ(s)| > 0 for σ > 1. Via the functional equation and well-known properties

of Γ(s), one can deduce that ζ(−2n) = 0 for all natural numbers n. These are the so-called

trivial zeros of ζ(s). Riemann showed that there are infinitely many nontrivial zeros of

ζ(s), which are located in the critical strip, 0 ≤ σ ≤ 1. He famously conjectured that all

the nontrivial zeros of ζ(s) have real part equal to 1/2. This statement is now called the

Riemann Hypothesis, and it is considered to be one of the most important open problems

in mathematics. Riemann found a deep connection between the nontrivial zeros of ζ(s)

and the distribution of the primes. Indeed, the key to the analytic proof of the Prime

Number Theorem is to show that ζ(1+ it) 6= 0. Moreover, the Riemann Hypothesis provides

essentially the best possible bound for the error term in the Prime Number Theorem. (See

[91].)

1.3 Generalizations of ζ(s)

Let us now consider a generalization of ζ(s) by letting K be a number field and OK

its ring of integers. In the half-plane <(s) > 1, the Dedekind zeta-function attached to K is

defined as

ζK(s) :=
∑
I⊂OK

1

N(I)s
=
∏

p⊂OK

(
1− 1

N(p)s

)−1

,

where I and p run over the nonzero ideals and prime ideals ofOK , respectively, and N=NK/Q

denotes the absolute norm on K.

The function ζK(s) extends meromorphically to the complex plane and has a simple

pole at s = 1 with residue

Res
s=1

{
ζK(s)

}
=

2r1(2π)r2

w|d|1/2
hR. (1.3.1)

Here r1 denotes the number of real embeddings of K, r2 denotes the number of pairs of

complex embeddings of K, w is the number of roots of unity, d is the discriminant of K, h

is the class number of K, and R is the regulator.

8



The function ζK(s) encodes information about the prime ideals of OK due to the way

in which unique factorization generalizes. In the case K=Q, each element of OQ =Z factors

uniquely as the product of prime integers, a fact established by the Fundamental Theorem

of Arithmetic. In this case, ζK(s) = ζ(s), which we have seen encodes information about

the prime integers. Such a factorization does not hold for other choices of K. For example,

suppose K=Q[
√
−5]. Then OK =Z[

√
−5], and we can see that all of the elements of Z[

√
−5]

do not factor uniquely into irreducible elements of Z[
√
−5]. For example,

6 = 2 · 3 = (1+i
√

5)(1−i
√

5),

and it is not difficult to show that 2, 3, and 1± i
√

5 are irreducible. Dedekind made the

discovery that the elements of OK will, however, always factor uniquely into prime ideals.

Thus the correct generalization of unique factorization in a number field K is by way of

prime ideals.

The Riemann zeta-function and Dedekend zeta-functions are members of a large class

of functions, called L-functions. These functions can be defined in association with a plethora

of mathematical objects, including Dirichlet characters, holomorphic cusp forms, and elliptic

curves. Studying the analytic aspects of these functions is a worthwhile endeavor. As we

have seen, the truth of the Prime Number Theorem depends upon the value of ζ(s) on the

line s= 1+it. The residue of the pole of ζK(s), given in (1.3.1), encodes information about

the class number of K. As a new example, the key component to the proof of Dirichlet’s

Theorem on primes in arithmetic progressions is the fact that the Dirichlet L-function L(s, χ)

of a primitive character χ does not vanish at s=1.

1.3 Properties of Automorphic L-functions on GL(m) over Q

As a whole, the Langlands program predicts that the most general L-functions are

attached to automorphic representations of GL(n) over a number field and further conjectures

9



that these L-functions should be expressible as products of the Riemann zeta-function and

automorphic L-functions attached to cuspidal automorphic representations of GL(m) over

the rationals. We study the properties of such L-functions.

Let π be an irreducible cuspidal automorphic representation of GL(m) over Q with

unitary central character. As before, let s = σ + it. For <(s) > 1, we let

L(s, π) :=
∞∑
n=1

aπ(n)

ns
=
∏
p

p prime

m∏
j=1

(
1− αj(p)

ps

)−1

(1.3.2)

be the global L-function attached to π (as defined by Godement and Jacquet in [32] and

Jacquet and Shalika in [51]). Here m ∈ N is called the degree of the L-function, and

{α1(p), . . . , αm(p)} is the set of local parameters of the L-function. Furthermore, aπ(1) = 1,

and aπ(n), αj(p) ∈ C for all π, n, j, and p.

An L-function is called primitive if it is not the product of two L-functions of smaller

degree. The (primitive) function L(s, π) is either the Riemann zeta-function or continues

analytically to an entire function of order 1 satisfying a functional equation of the form

Φ(s, π) := N s/2 γ(s, π)L(s, π)

= επ Φ(1−s, π),

where N is a natural number, |επ| = 1, Φ(s, π) = Φ(s̄, π), and the gamma factor

γ(s, π) =
m∏
j=1

ΓR(s+µj).

Here ΓR(s) = πs/2 Γ(s/2), and the µj are complex numbers. The Generalized Riemann

Hypothesis states that all the nontrivial zeros of L(s, π) are on the critical line <(s)=1/2.

10



Logarithmically differentiating the Euler product given in 1.3.2, we define

−L
′

L
(s, π) := − d

ds
logL(s, π) =

∑
p`, `≥1

(
α`1(p) + · · ·+ α`m(p)

)
log p

p`s
=
∞∑
n=1

Λπ(n)

ns

for <(s) > 1. We note here that Λπ(p) = aπ(p) log p for primes p. For an in-depth discussion

of the theory of the L-functions, we refer the reader to Chapter 5 of the book by Iwaniec

and Kowalski [50].

1.3 Properties of Twisted Automorphic L-functions on GL(m) over Q

We will also study the properties of automorphic L-functions on GL(m) over Q twisted

by Dirichlet characters. Let χ be a primitive Dirichlet character modulo q satisfying (q,N) =

1, and let

L(s, π ⊗ χ) :=
∞∑
n=1

aπ(n)χ(n)

ns
=
∏
p

p prime

m∏
j=1

(
1− αj(p)χ(p)

ps

)−1

for <(s) > 1. Then

−L
′

L
(s, π ⊗ χ) := − d

ds
logL(s, π ⊗ χ) =

∞∑
n=1

Λπ(n)χ(n)

ns
,

when <(s) > 1. For q > 1, the function L(s, π ⊗ χ) continues to an entire function of order

1 and satisfies a functional equation of the form

Φ(s, π ⊗ χ) :=
(
qmN

)s/2
γχ(s, π)L(s, π ⊗ χ)

= επ,χ Φ(1−s, π ⊗ χ),

where |επ,χ| = 1, Φ(s, π ⊗ χ) = Φ(s̄, π ⊗ χ), and the gamma factor

γχ(s, π) =
m∏
j=1

ΓR
(
s+µj,χ

)

11



for complex numbers µj,χ. The Generalized Riemann Hypothesis states that all the nontrivial

zeros of L(s, π ⊗ χ) are on the critical line <(s)=1/2.

1.4 Notation

Throughout this thesis, let p denote a prime integer. We will make use of Landau’s

big-O notation, f(T ) = O(g(T )), and Vinogradov’s notation, f(T ) � g(T ), to mean that

there exists a positive constant C such that the inequality

|f(T )| ≤ C|g(T )|

holds as T →∞. Unless otherwise stated, all constants implied by the big-O or� notations

are absolute. We also use the expression f(T )� g(T ) to mean that

|f(T )| ≥ C|g(T )|

as T → ∞ where the implied constant is absolute. Finally, the notation f(T ) ∼ g(T ) as

T →∞ means that

lim
T→∞

f(T )

g(T )
= 1.

1.5 Continuous Moments of L-functions

The growth of a function and the distribution of its zeros are intimately connected,

a relationship illustrated by the following theorem from complex analysis.

Jensen’s Formula. Let f(z) be analytic for |z| ≤ R, and suppose that f(0) 6= 0. If

ρ1, ρ2, . . . , ρn are the zeros of f(z) inside |z| ≤ R, then

n∑
k=1

log |ρk| = log(|f(0)|Rn)− 1

2π

∫ 2π

0

log
∣∣f(Reiθ)

∣∣ dθ.
12



An analogue of this formula for rectangles is very useful when working with Dirichlet

series.

Littlewood’s Lemma. Let f(s) be analytic and nonzero on the rectangle C with vertices

σ0, σ1, σ1 + iT , and σ0 + iT , where σ0 < σ1. Then

2π
∑
ρ∈C

Dist(ρ) =

∫ T

0

log |f(σ0+it)| dt−
∫ T

0

log |f(σ1+it)| dt

+

∫ σ1

σ0

arg f(σ0+iT ) dσ −
∫ σ1

σ0

arg f(σ) dσ,

where the sum runs over the zeros ρ of f(s) in C and Dist(ρ) is the distance from ρ to the

left edge of the rectangle.

By the arithmetic-geometric mean inequality, we have

∫ T

0

log |f(σ0+it)| dt =
1

2k

∫ T

0

log |f(σ0+it)|2k dt ≤ T

2k
log

(
1

T

∫ T

0

|f(σ0+it)|2k dt
)
,

which gives the connection between the mean-value estimate

∫ T

0

|f(σ0+it)|2k dt

and the distance between certain zeros of f(s) and the line <(s) = σ0.

1.5 Moments of ζ(s)

Definition 1.5.1. The 2kth moment of the modulus of the Riemann zeta-function is defined

as

Ik(T ) :=

∫ T

0

∣∣∣∣ζ(1

2
+it

)∣∣∣∣2kdt,
where k is any positive real number.

Much thought has been given to understanding Ik(T ) for different values of k, however

finding an asymptotic expression of Ik(T ) for all k > 0 has proven to be a very difficult

13



question. In 1918, Hardy and Littlewood [42] showed that

I1(T ) ∼ T log T

as T →∞. In 1926, Ingham [48] showed that

I2(T ) ∼ T

2π2
(log T )4

as T → ∞. No other asymptotic estimate has been proven for any other value of k > 0.

Conjecturally,

Ik(T ) =

∫ T

0

∣∣∣∣ζ(1

2
+it

)∣∣∣∣2kdt ∼ ckT (log T )k
2

for all k > 0, where ck is some constant depending on k. Obtaining such an asymptotic

expression currently seems out of reach, however precise values of the constants ck have been

conjectured using various techniques and approaches. For example, using number theoretic

techniques, Conrey and Ghosh [18] conjectured the precise value of c3, and Conrey and Gonek

[24] conjectured the precise value of c4. In 2000, Keating and Snaith [54] used techniques

from random matrix theory to conjecture the constants ck for k > −1/2. In 2003, Diaconu,

Goldfeld, and Hoffstein [27] used multiple Dirichlet series to obtain the constant conjectures

for all k ∈ N, as did Conrey, Farmer, Keating, Rubinstein, and Snaith [17] in 2006 using

their L-function “recipe” and random matrix theory.

1.5 Gaps Between Zeros of Zeta-functions

In this section, we introduce Theorem 1.5.2, which pertains to the vertical distribution

of nontrivial zeros ζK(s), where K is a quadratic number field. This result is proved in

Chapter 3 using the mixed second moments of derivatives of ζK(s) on the critical line. (See

[89].)

14



First, we sketch the history of the problem for ζ(s). Denote the nontrivial zeros of

ζ(s) as ρ = β′ + iγ′, where β′, γ′ ∈ R. It is known that for large T , the number of nontrivial

zeros of ζ(s) up to height T is

N(T ) :=
∑

0<γ′≤T

1 =
T

2π
log

T

2π
− T

2π
+O(log T ).

Consider the sequence 0 < γ′1 ≤ γ′2 ≤ . . . of consecutive ordinates of the nontrivial zeros of

ζ(s), and note that the average size of γ′n+1 − γ′n is 2π/ log γ′n. Normalizing, let

λ := lim sup
n→∞

(γ′n+1 − γ′n) log γ′n
2π

and

µ := lim inf
n→∞

(γ′n+1 − γ′n) log γ′n
2π

.

By definition, µ ≤ 1 ≤ λ, but it is conjectured that µ = 0 and λ = ∞. (See [65].)

In other words, it is expected that there are arbitrarily small and large (normalized) gaps

between consecutive nontrivial zeros of the Riemann zeta-function. Selberg (unpublished but

announced in [81]) proved that µ < 1 < λ. There is an abundance of quantitative results on

the sizes of µ and λ, both unconditional and assuming various unproved hypotheses. See,

for instance, [6], [8], [9], [10], [20], [21], [19], [30], [34], [40], [41], [65], [66], [72], [84], and

[93]. Assuming the Riemann Hypothesis, the best current bounds are λ ≥ 2.9 by Bui [9] and

µ ≤ 0.5154 by Feng and Wu [30].

Let us now consider the problem in a different setting. Let K be a quadratic number

field with discriminant d, and let χd be the Kronecker symbol of d. Then the Dedekind

zeta-function factors as

ζK(s) = ζ(s)L(s, χd), (1.5.1)

where ζ(s) is the Riemann zeta-function and L(s, χd) is the Dirichlet L-function associated

to χd.
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By understanding the moments of ζK(s) on the critical line, we can study the vertical

distribution of the zeros of ζK(s) in the critical strip, which we denote by ρK = β+iγ. It has

been shown that for an imaginary quadratic number field K, the vertical distribution of the

nontrivial zeros of ζK(s) is related to the existence or non-existence of Landau-Siegel zeros

and hence the size of the class number of K. This correspondence is described in the work

of Conrey and Iwaniec [15]; see also Montgomery and Weinberger [68]. This circle of ideas

is often referred to as the Deuring-Heilbronn phenomenon. For a very nice overview of the

Deuring-Heilbronn phenomenon and its implications, see Stopple’s survey article [87].

For a real or imaginary quadratic number field of discriminant d, it is known [50,

Theorem 5.31] that for T ≥ 2, we have

NK(T ) :=
∑

0<γ≤T

1 =
T

π
log

√
|d|T

(2πe)2
+O

(
log(

√
|d|T )

)
.

Consider the sequence 0 < γ1 ≤ γ2 ≤ . . . of consecutive ordinates of the nontrivial zeros of

ζK(s), and note that the average size of γn+1 − γn is π/ log(
√
|d|γn). Normalizing, let

µK := lim inf
n→∞

γn+1 − γn
π/ log(

√
|d|γn)

and

λK := lim sup
n→∞

γn+1 − γn
π/ log(

√
|d|γn)

.

By definition we have µK ≤ 1≤ λK , however it is conjectured that µK = 0 and λK =∞. In

other words, we expect that there are arbitrarily small and large normalized gaps between

consecutive nontrivial zeros of Dedekind zeta-functions of quadratic number fields. While we

expect µK =0, this is not due to the presumption of coincident nontrivial zeros of ζ(s) and

L(s, χd). On the contrary, we expect that the zeros of ζK(s) are simple. Conrey, Ghosh, and

Gonek [22] have shown that the number of simple zeros of ζK(s) with 0 < γ ≤ T exceeds

T 6/11 for sufficiently large T . In [23], the same authors show, assuming the Generalized
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Riemann Hypothesis for Dirichlet L-functions, that a positive proportion of the zeros of

ζK(s) are simple. In general, it is conjectured that any two distinct primitive L-functions

should have no shared zero.

That µK<1<λK is an open question, and in particular there do not seem to be any

quantitative results concerning the sizes of µK or λK . Towards finding a nontrivial lower

bound for λK , we prove the following unconditional theorem.

Theorem 1.5.2. Let T ≥ 2 and ε > 0. Let K be a quadratic number field of discriminant d

with |d| ≤ T
7
9
−ε. There exists a subinterval of [T, 2T ] having length at least

√
6 · π

log
√
|d|T

(
1 +O(|d|ε log−1 T )

)
for which the function t 7→ ζK(1/2 +it) is free of zeros.

Theorem 1.5.2 does not, a fortiori, state anything about the quantity λK . However, if

we assume the Generalized Riemann Hypothesis for ζK(s), then Theorem 1.5.2 immediately

implies the following inequality for λK .

Corollary 1.5.3. Assume the Generalized Riemann Hypothesis for ζK(s). Then λK ≥
√

6.

In particular, there are infinitely many normalized gaps between consecutive zeros of ζK(s)

which are greater than
√

6− ε times the average spacing for any ε > 0.

The constant
√

6 in Corollary 1.5.3 is larger than one might expect since the same

method of proof applied to the Riemann zeta-function only exhibits gaps between nontrivial

zeros of ζ(s) of size
√

3 times the average spacing. (See [40].) Moreover, in contrast to

Theorem 1.5.2 and its corollary, establishing a nontrivial upper bound on µK seems to be

more difficult due to the connection to the Deuring-Heilbronn phenomenon and the class

number problem for imaginary quadratic fields mentioned above.
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1.5 Moments of Products of Automorphic L-functions

In this section, assuming some standard conjectures, we give upper bounds on mo-

ments of arbitrary products of automorphic L-functions. This is joint work with Micah B.

Milinovich. (See [63].)

In general, given a primitive automorphic L-function, L(s, π), normalized so that

<(s) = 1/2 is the critical line, it has been conjectured [17] that there exist constants C(k, π)

such that ∫ T

0

|L(1
2
+it, π)|2k dt ∼ C(k, π)T (log T )k

2

for any k > 0 as T → ∞. For degree one L-functions, the Riemann zeta-function and

Dirichlet L-functions, the conjecture is known to hold when k is 1 or 2. For degree two L-

functions, many cases of the conjecture have been established when k = 1. See, for instance,

results of Good [35] and Zhang [95, 96]. For higher degree L-functions, and for higher values

of k, the conjecture seems to be beyond the scope of current techniques.

It is expected that the values of distinct primitive L-functions on the critical line are

uncorrelated. Therefore, given r distinct primitive L-functions, L(s, π1), . . . , L(s, πr), nor-

malized so that <(s) = 1/2 is the critical line, one might conjecture that for any k1, . . . , kr > 0

we have

∫ T

0

|L(1
2
+it, π1)|2k1 · · · |L(1

2
+it, πr)|2krdt ∼ C(~k, ~π)T (log T )k

2
1+···+k2r (1.5.2)

for some constant C(~k, ~π) as T → ∞ where ~k = (k1, . . . , kr) and ~π = (π1, . . . , πr). The

conjectural order of magnitude of the moments in (1.5.2) is consistent with the observation

that the logarithms of distinct primitive L-functions on the critical line, logL(1
2

+ it, π1)

and logL(1
2

+it, π2), are (essentially) statistically independent if π1 6∼= π2 as t varies under

the assumption of Selberg’s orthogonality conjectures2 for the Dirichlet series coefficients of

2For automorphic L-functions, we state Selberg’s orthogonality conjectures in Chapter 4.

18



L(s, π1) and L(s, π2). This statistical independence can be made precise; see, for instance,

the work of Bombieri and Hejhal [5] and Selberg [82].

Corollary A of [85] states that for the Riemann zeta-function the inequality

T (log T )k
2 �k

∫ T

0

|ζ(1
2
+it)|2k dt�k,ε T (log T )k

2+ε

holds for any k > 0 and every ε > 0 assuming the Riemann Hypothesis. The upper bound

is due to Soundararajan, and the lower bound is due to Ramachandra [76]. In May of 2013,

Harper [44] refined the ideas of Soundararajan and proved, under the assumption of the

Riemann Hypothesis, that for every positive real number k, we have

∫ T

0

∣∣∣∣ζ (1

2
+it

)∣∣∣∣2k dt�k T (log T )k
2

,

where the indicated constant depends on k. We note that Harper uses Soundararajan’s

upper bounds for moments of ζ(s) in [85] to prove this result.

In support of the conjecture in (1.5.2), we have proven the following mean-value

estimate for arbitrary products of primitive automorphic L-functions.

Theorem 1.5.4. Let L(s, π1), . . . , L(s, πr) be L-functions attached to distinct irreducible

cuspidal automorphic representations, πj, of GL(mj) over Q each with unitary central char-

acter, and assume that these L-functions satisfy the Generalized Riemann Hypothesis. Then,

if max
1≤j≤r

mj ≤ 4, we have

∫ T

0

|L(1
2
+it, π1)|2k1 · · · |L(1

2
+it, πr)|2krdt� T (log T )k

2
1+···+k2r+ε (1.5.3)

for any k1, . . . , kr > 0 and every ε > 0 when T is sufficiently large. The implied constant

in (1.5.3) depends on π1, . . . , πr, k1, . . . , kr, and ε. If max
1≤j≤r

mj ≥ 5, then the inequality in

(1.5.3) holds under the additional assumption of Hypothesis H, which is given in Chapter 4.
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Observe that the upper bound in Theorem 1.5.4 is nearly as sharp as the conjectured

asymptotic formula in (1.5.2). In the case r = 1, combining the result of Theorem 1.5.4 with

the work of Pi [73], we deduce that

T (log T )k
2 �k,π

∫ T

0

|L(1
2
+it, π)|2k dt�π,k,ε T (log T )k

2+ε (1.5.4)

for any k > 0 and every ε > 0 where π is a self-contragredient irreducible cuspidal automor-

phic representations of GL(m) over Q under the assumptions of the Generalized Riemann

Hypothesis and the Ramanujan-Petersson Conjecture3 for L(s, π). The upper bound holds

under weaker assumptions and for more general L-functions. We may let L(s, π1) = ζ(s)

in the proof of Theorem 1.5.4, so our theorem generalizes Soundararajan’s result. As is

the case in [85], it is possible to replace the ε in Theorem 1.5.4 by a quantity which is

O(1/ log log log T ); see Ivić [49]. Moreover, note that we do not assume that the L-functions

in Theorem 1.5.4 satisfy the Ramanujan-Petersson Conjecture. Instead, we assume Hy-

pothesis H of Rudnick and Sarnak [79]. This mild (but unproven) conjecture is implied

by the Ramanujan-Petersson Conjecture and is known to hold for L-functions attached to

irreducible cuspidal automorphic representations on GL(m) over Q if m ≤ 4.

Finally we remark that, assuming the Generalized Riemann Hypothesis and the

Ramanujan-Petersson Conjecture, Pi [73] has shown that the integral in (1.5.4) is� T (log T )k
2

if π is self-contragredient for any fixed k satisfying 0 < k < 2/m. Moreover, lower bounds for

the integral in (1.5.4) which are � T (log T )k
2

for any positive rational number k have been

established by Akbary and Fodden [1] assuming unproven bounds toward the Ramanujan-

Petersson Conjecture but without assuming the Generalized Riemann Hypothesis. The

results in [1] are unconditional in the case m = 2.

3For automorphic L-functions, we state the Ramanujan-Petersson Conjecture in Chapter 4.
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1.5 Moments of Dedekind zeta-functions

Let K be an algebraic number field. It is known that the Dedekind zeta-function

attached to K factors as a product of Artin L-functions. For instance, if K is a Galois

extension of Q, then

ζK(s) =
∏
χ

L(s, χ)χ(1) (1.5.5)

where the product is over the irreducible characters χ of Gal(K/Q) and

∑
χ

χ(1)2 = |Gal(K/Q)| = [K : Q]. (1.5.6)

The Langlands reciprocity conjecture implies that each L(s, χ) = L(s, π) for an irreducible

cuspidal automorphic representation π of GL(m) over Q where χ(1) = m. By (1.5.2), (1.5.5),

and (1.5.6), for Galois extensions K over Q, this leads to the conjecture that

∫ T

0

∣∣ζK(1
2
+it)

∣∣2k dt ∼ C(k,K)T (log T )[K:Q]k2 (1.5.7)

for any k > 0 as T →∞. Here C(k,K) is a constant depending on k and the number field

K. The recent work of Heap [45] discusses this conjecture in more detail.

The conjectural asymptotic formula in (1.5.7) is known to hold when k = 1 for the

Dedekind zeta-functions of quadratic extensions of Q. Let d be a fundamental discriminant,

and let K = Q[
√
d]. Then Motohashi [70] has shown that

∫ T

0

∣∣ζK(1
2
+it)

∣∣2 dt ∼ 6

π2
L(1, χd)

2
∏
p|d

(
1+

1

p

)−1

T log2 T

as T → ∞ using the factorization ζK(s) = ζ(s)L(s, χd), where L(s, χd) is the Dirichlet L-

function associated to χd, the Kronecker symbol of d. Also in support of (1.5.7), for finite
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Galois extensions K over Q, Akbary and Fodden [1] have shown that the inequality

∫ T

0

∣∣ζK(1
2
+it)

∣∣2kdt � T (log T )[K:Q]k2

holds for any rational number k > 0 as T →∞.

Using results of Arthur and Clozel [2], the following mean-value estimate for Dedekind

zeta-functions is a consequence of Theorem 1.5.4.

Corollary 1.5.5. Let K be a finite solvable Galois extension of Q, and let ζK(s) be the

associated Dedekind zeta-function. Then, assuming the Generalized Riemann Hypothesis for

ζK(s), we have ∫ T

0

∣∣ζK(1
2
+it)

∣∣2kdt�K,k,ε T (log T )[K:Q]k2+ε

for any k, ε > 0 when T is sufficiently large.

The condition that Gal(K/Q) be a solvable group can be removed by approaching

the problem in a more algebraic way.

Theorem 1.5.6. Let K be a finite Galois extension of Q. Then, assuming the Generalized

Riemann Hypothesis for ζK(s), we have

∫ T

0

∣∣ζK(1
2
+it)

∣∣2kdt�K,k,ε T (log T )[K:Q]k2+ε

for any k, ε > 0 when T is sufficiently large.

Unlike the proof of Corollary 1.5.5, our proof of Theorem 1.5.6 does not rely on a

factorization of ζK(s) into automorphic L-functions.

1.5 Coefficients of Zeta- and L-functions in Short Intervals

As an application of Theorem 1.5.6, let K be a number field with discriminant d, and

let rK(n) denote the number of ideals in K of norm n. Then, by the definition of ζK(s), we
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see that

ζK(s) =
∞∑
n=1

rK(n)

ns
, <(s) > 1.

When K is a Galois extension of Q, we can use Theorem 1.5.6 and a technique of Selberg

[80] to study the distribution of rK(n) in short intervals assuming the Generalized Riemann

Hypothesis for ζK(s). In order to state our result, recall from (1.3.1) that

Res
s=1

{
ζK(s)

}
= lim

s→1
(s−1)ζK(s) =

2r1(2π)r2hR

w
√
|d|

where r1 is the number of real embeddings of K, r2 is the number of pairs of complex

embeddings, h is the class number of K, R is the regulator, w is the number of roots of unity

in K, and d is the discriminant. Landau’s classical mean-value estimate for the arithmetic

function rK(n) is ∑
n≤x

rK(n) =
2r1(2π)r2hR

w
√
|d|

x+O
(
x1−2/([K:Q]+1)

)
.

In Chapter 6, we prove the following conditional estimate for the variance of the arith-

metic function rK(n) in short intervals. This result, proved in collaboration with Micah B.

Milinovich, appears in [63].

Theorem 1.5.7. Let K be a finite Galois extension of Q. Let y = y(x) be a positive

and increasing function such that y → ∞ and y/x → 0 as x → ∞. Then, assuming the

Generalized Riemann Hypothesis for ζK(s), we have

1

X

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

rK(n)− 2r1(2π)r2hR

w
√
|d|

y

∣∣∣∣∣
2

dx � y (logX)[K:Q]+ε

for ε > 0 when X is sufficiently large. Here the implied constant depends on K and ε.

Assuming the Generalized Riemann Hypothesis for ζK(s), it follows from Theorem

1.5.7 that ∑
x<n≤x+y

rK(n) ∼ 2r1(2π)r2hR

w
√
|d|

y
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for almost all x if we choose y to be a function of x satisfying y/(log x)[K:Q]+ε → ∞ but

y/x→ 0 as x→∞.

Using Theorem 1.5.4, we can similarly study the behavior of coefficients of products

of automorphic L-functions in short intervals. To state the results in this situation, we first

introduce some notation. For k ≥ 0 an integer and k1, . . . , kr ∈ N, let

L(s) = ζ(s)k
r∏
j=1

L(s, πj)
kj

be an (automorphic) L-function. Here we are assuming that the L-functions L(s, π1), . . . , L(s, πr)

are as in Theorem 1.5.4 and that L(s, πj) 6= ζ(s) for all 1 ≤ j ≤ r. We distinguish between

the case k = 0, where L(s) is entire, and the case k ≥ 1, where L(s) has a pole of order k at

s = 1. For <(s) > 1, we set

L(s) =



∞∑
n=1

aL(n)

ns
, if k = 0,

∞∑
n=1

bL(n)

ns
, if k ∈ N.

As is to be expected, the behavior of aL(n) and bL(n) in short intervals differs due to the

presence of the pole of the generating function when k ≥ 1. For x > 0, we define

RL(x) = Res
s=1

(
L(s)

xs

s

)
.

Note that RL(x) = 0 if k = 0, that

RL(x) = x

r∏
j=1

L(1, πj)
kj
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if k = 1, and that

RL(x) =
x(log x)k−1

(k−1)!

r∏
j=1

L(1, πj)
kj +O

(
x(log x)k−2

)
if k ≥ 2. In Chapter 6, we modify the proof of Theorem 1.5.7 to prove the following theorem.

Theorem 1.5.8. Let L(s, π1), . . . , L(s, πr) be L-functions attached to distinct irreducible

cuspidal automorphic representations, πj, of GL(mj) over Q each with unitary central char-

acter, and assume that these L-functions satisfy the Generalized Riemann Hypothesis. Let

y = y(x) be a positive and increasing function such that y → ∞ and y/x → 0 as x → ∞.

Then, if max
1≤j≤r

mj ≤ 4, we have

1

X

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

aL(n)

∣∣∣∣∣
2

dx � y (logX)k
2
1+···+k2r+ε

and

1

X

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

bL(n)−
(
RL(x+y)−RL(x)

)∣∣∣∣∣
2

dx � y (logX)k
2+k21+···+k2r+ε

for ε > 0 when X is sufficiently large and the implied constants depend on π1, . . . , πr, k,

k1, . . . , kr, and ε. If max
1≤j≤r

mj ≥ 5, then the result holds under the additional assumption of

Hypothesis H, which is given in Chapter 4.

1.6 Moments of Quadratic Twists of L-functions

In this section, assuming the Generalized Riemann Hypothesis and the Ramanujan-

Petersson Conjecture, we give upper bounds on moments of arbitrary products of automor-

phic L-functions twisted by quadratic Dirichlet characters. This is joint work with Micah B.

Milinovich. (See [63].)
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One can use the methods of Soundararajan in [85] to study the moments of central

values of quadratic twists of automorphic L-functions. In this case, the conjecture for the size

of moments depends on the symmetry type of the family of these twists. Let L(s, π) be an

L-function attached to a self-contragredient irreducible cuspidal automorphic representation

π on GL(m) over Q. (We assume the L-function is self-dual so that the central value is

real.) Then Katz and Sarnak [52] and Rubinstein [78] have conjectured that the family of

quadratic twists of L(s, π) has either symplectic or orthogonal symmetry corresponding to

whether or not the symmetric square L-function L(s, π,∧2) has a pole at s = 1.

Following the notation in [78], we set δ(π) = 1 if L(s, π,∧2) does not have a pole at

s = 1 and set δ(π) = −1 if L(s, π,∧2) has a pole at s = 1. Then for each k > 0 it has been

conjectured (see [16, 53]) that there are constants C[(k, π) > 0 such that

∑
|d|≤X

[
L(1

2
, π ⊗ χd)k ∼ C[(k, π)X(logX)k(k−δ(π))/2

as X → ∞. Here the superscript [ indicates that the sums run over fundamental discrimi-

nants d, χd denotes the corresponding primitive quadratic Dirichlet character, and (as before)

we have normalized so that s = 1/2 is the central point. In the case of quadratic Dirichlet

L-functions and L-functions of quadratic twists of a fixed elliptic curve E, Soundararajan

[85] proved that ∑
|d|≤X

[
L(1

2
, χd)

k � X(logX)k(k+1)/2+ε (1.6.1)

and ∑
|d|≤X

[
L(1

2
, E ⊗ χd)k � X(logX)k(k−1)/2+ε (1.6.2)

for every k > 0 and any ε > 0 assuming the Generalized Riemann Hypothesis for the relevant

L-functions. (Note that in the first example the L-functions have δ(π) = −1, and in the

second case the L-functions have δ(π) = 1.)
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1.6 Moments of Products of Quadratic Twists of Automorphic L-functions

We generalize the above results of Soundararajan and, in analogy with our Theorem

1.5.4, we prove the following result for central values of quadratic twists of arbitrary products

of automorphic L-functions.

Theorem 1.6.1. Let d denote a fundamental discriminant, and let χd be a primitive quadratic

Dirichlet character of conductor |d|. Let L(s, π1), . . . , L(s, πr) be L-functions attached to

distinct self-contragredient irreducible cuspidal automorphic representations, πj, of GL(mj)

over Q each with unitary central character, and assume that the twisted L-functions L(s, π1⊗

χd), . . . , L(s, πr⊗χd) satisfy the Generalized Riemann Hypothesis and the Ramanujan-Petersson

Conjecture. Then we have

∑
|d|≤X

[
L(1

2
, π1 ⊗ χd)k1 · · ·L(1

2
, πr ⊗ χd)kr � X(logX)k1(k1−δ(π1))/2+···+kr(kr−δ(πr))/2+ε, (1.6.3)

for any k1, . . . , kr > 0 and every ε > 0 when X is sufficiently large. Here the superscript [

indicates that the sum is restricted to fundamental discriminants, and the implied constant

depends on π1, . . . , πr, k1, . . . , kr, and ε.

We now give two examples which are consequences of Theorem 1.6.1 and generalize

Soundararajan’s results in (1.6.1) and (1.6.2) to biquadratic extensions of Q. Let d1 and d2

be coprime fundamental discriminants, and let Kd1,d2 = Q[
√
d1,
√
d2] be the corresponding

biquadratic number field. Then the Dedekind zeta-function of Kd1,d2 factors as

ζKd1,d2(s) = ζ(s)L(s, χd1)L(s, χd2)L(s, χd1d2),

and similarly, given an elliptic curve E over Q, the Hasse-Weil L-function L(s, E/Kd1,d2) of

E over Kd1,d2 factors as

L(s, E/Kd1,d2) = L(s, E)L(s, E ⊗ χd1)L(s, E ⊗ χd2)L(s, E ⊗ χd1d2).
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Using Theorem 1.6.1, we can estimate moments of ζKd1,d2(
1
2
) and L(1

2
, E/Kd1,d2) by averaging

over two sets of fundamental discriminants. (We note that under the assumption of the

Generalized Riemann Hypothesis for these zeta- and L-functions, these central values are

non-negative real numbers.) In particular, we have

∑
|d1d2|≤X
(d1,d2)=1

[
ζKd1,d2(

1
2
)k � X (logX)3k(k+1)/2+1+ε (1.6.4)

and ∑
|d1d2|≤X
(d1,d2)=1

[
L(1

2
, E/Kd1,d2)

k � X (logX)3k(k−1)/2+1+ε (1.6.5)

for any ε > 0. Here the superscript [ indicates that the sum runs over two sets fundamental

discriminants, d1 and d2. When k = 1, the conditional estimate in (1.6.4) is consistent with

a result of Chinta [14] who proved that, as X →∞,

∑
d1,d2 odd

[
a(d1, d2)ζKd1,d2(

1
2
)F

(
d1d2

X

)
∼ cX log4X

for a constant c > 0, where F is a smooth compactly supported test function satisfying∫∞
0
F (x) dx = 1 and a(d1, d2) is a weighting factor satisfying a(d1, d2) = 1 if (d1, d2) = 1 and

is (on average) small otherwise.

Since the condition (d1, d2) = 1 implies that χd1d2 = χd1χd2 , and δ(π) = −1 for any

degree one L-function, under the conditions of Theorem 1.6.1 we have

∑
|d1d2|≤X
(d1,d2)=1

[
ζKd1,d2(

1
2
)k = ζ(1

2
)k
∑
|d1|≤X

[
L(1

2
, χd1)

k
∑

|d2|≤X/|d1|
(d1,d2)=1

[
L(1

2
, χd2)

kL(1
2
, χd1d2)

k

� X(logX)k(k+1)+ε
∑
|d1|≤X

[ L(1
2
, χd1)

k

|d1|

� X(logX)3k(k+1)/2+1+ε
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by two applications of (1.6.3) and summation by parts. This proves that the estimate in

(1.6.4) follows from Theorem 1.6.1.

To prove (1.6.5), we observe that the modularity theorems of Wiles [92], Wiles and

Taylor [88], and Breuil, Conrad, Diamond, and Taylor [7] imply that L(s, E) and its quadratic

twists correspond to L-functions attached to irreducible cuspidal automorphic representa-

tions of GL(2) over Q. Moreover, we have δ(π) = 1 for each of these L-functions. Therefore,

under the conditions of Theorem 1.6.1, we similarly have

∑
|d1d2|≤X
(d1,d2)=1

[
L(1

2
, E/Kd1,d2)

k = L(1
2
, E)k

∑
|d1|≤X

[
L(1

2
, E ⊗ χd1)k

∑
|d2|≤X/|d1|
(d1,d2)=1

[
L(1

2
, E ⊗ χd2)kL(1

2
, E ⊗ χd1d2)k

� X(logX)k(k−1)+ε
∑
|d1|≤X

[ L(1
2
, E ⊗ χd1)k

|d1|

� X(logX)3k(k−1)/2+1+ε

by two more applications of (1.6.3) and summation by parts. This shows that the estimate

in (1.6.5) also follows from Theorem 1.6.1.
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2 THE PROOF OF THEOREM 1.1.2 AND ITS COROLLARIES

In this chapter, we prove Theorem 1.1.2, that is, we establish the existence of m-

tuples that infinitely often represent strings of consecutive prime numbers. The proof is

based on the recent work of Maynard [62] and Tao which proves the existence of m-tuples

that infinitely often represent strings of prime numbers. We also give proofs to Corollary

1.1.3, Corollary 1.1.4, and Corollary 1.1.5. The results in this chapter were proved jointly

with William D. Banks and Tristan Freiberg. The proofs given here are slightly expanded

versions of the proofs that appear in our article [4].

2.1 The Proof of Theorem 1.1.2

We now prove Theorem 1.1.2.

Proof. Let m, k ∈ N with m ≥ 2 and k ≥ km, where km log km > e8m+4. Let b1, . . . , bk be

distinct integers such that {x+bj}kj=1 is admissible, and let g be any positive integer coprime

with b1 · · · bk. Notice that, for any integer B, the k-tuple

{x+ bj + gB}kj=1

is also admissible. Thus we may assume, without loss of generality, that

1 < b1 < · · · < bk.
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We will now construct a new admissible k-tuple of linear forms which will generate strings

of consecutive primes infinitely often. Let r = bk − k ≥ 1, and choose arbitrary primes

q1 < · · · < qr coprime to g. For each qi, we have (g, qi) = 1, and thus the linear congruence

gat + t ≡ 0 mod qt

has a solution at, say. By the Chinese Remainder Theorem, we can find an integer a such

that

ga+ t ≡ 0 mod qt (1 ≤ t ≤ bk and t /∈ {b1, . . . , bk}).

Consider the k-tuple

A(x) = {gQx+ ga+ bj}kj=1

where Q := q1 · · · qr. Since {x+bj}kj=1 is admissible and t /∈ {b1, . . . , bk}, it follows that A(x)

is also admissible. Moreover, A(x) satisfies (1.1.1) (with gj = gQ and hj = ga + bj) since

the integers b1, . . . , bk are distinct and gQ ≥ 1. For every N ∈ N our choices of Q and a

guarantee that

g(QN + a) + t ≡ 0 mod qt (1 ≤ t ≤ bk and t /∈ {b1, . . . , bk}).

Consequently, any prime number in the interval

[
g(QN + a) + b1, g(QN + a) + bk

]

must lie in A(N).

Now letm′ be the largest integer such that there is a subset {h1, . . . , hm′} of {b1, . . . , bk}

with the property that the m′ integers

g(QN + a) + hi (1 ≤ i ≤ m′) (2.1.1)
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are simultaneously prime for infinitely many N ∈ N. Since k ≥ km we can apply the

Maynard–Tao Theorem with A(x) to deduce that m′ ≥ m.

By the maximal property of m′, it must be the case that for all sufficiently large

N ∈N, if the numbers in (2.1.1) are all prime, then g(QN + a) + bj is composite for every

bj ∈ {b1, . . . , bk} \ {h1, . . . , hm′}. Hence, for infinitely many N ∈N, the interval

[
g(QN + a) + b1, g(QN + a) + bk

]

contains precisely m′ consecutive primes, namely, the numbers

{gn+ hi}m
′

i=1

with n = QN + a. This completes the proof of Theorem 1.1.2.

2.2 The Proof of Corollary 1.1.3

In this section, we prove Corollary 1.1.3, which in particular, answers the question of

Erdős and Turán [29] given in Section 1.1.1.

Proof. Let m ≥ 2, and let k be sufficiently large in terms of m. Let B(x) = {x + 2j}kj=1,

which is easily seen to be admissible. By Theorem 1.1.2, there exists a tuple

H(x) = {x+ 2νj}m+1
j=1 ⊆ B(x)

such that H(n) is an (m + 1)-tuple of consecutive primes for infinitely many n. Here,

1 ≤ ν1 < · · · < νm+1 ≤ k. For such n, writing

H(n) = {n+ 2νj}m+1
j=1 = {pr+1, . . . , pr+m+1}
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with some integer r, we have

δj = dr+j = pr+j+1 − pr+j = 2νj+1 − 2νj

for 1 ≤ j ≤ m. Then

j−1∑
i=1

δi =

j−1∑
i=1

(2νi+1 − 2νi)

= 2νj − 2ν1

< 2νj+1 − 2νj

= δj

for 2 ≤ j ≤ m. Hence,

δj−1 ≤ δ1 + · · ·+ δj−1 < δj

for each j, which proves the first statement. To obtain runs of consecutive prime gaps with

δj > δj+1 + · · ·+ δm ≥ δj+1,

consider instead the admissible k-tuple {x− 2j}kj=1. This completes the proof.

2.3 The Proof of Corollary 1.1.4

In this section, we prove that for every natural number m ≥ 2, there are infinitely

many runs (δj)
m
j=1 of consecutive prime gaps such that δj−1 | δj for 2 ≤ j ≤ m and infinitely

many runs such that δj+1 | δj for 1 ≤ j ≤ m− 1.
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Proof. Let m ≥ 2, let k be sufficiently large in terms of m. Put Q :=
∏

p≤k p, and define the

sequence b1, . . . , bk inductively as follows. Let

b1 = 0, b2 = Q, b3 = 2Q,

and for any j ≥ 3, let

bj = bj−1 +
∏

1≤s<t≤j−1

(bt − bs).

Note that, for v ≥ u ≥ 1, we have

(bu+1 − bu) | (bv+1 − bv). (2.3.1)

Now let B(x)={x+ bj}kj=1, and observe that B(x) is admissible since Q divides each integer

bj. By Theorem 1.1.2, there exists a tuple

H(x) = {x+ bνj}m+1
j=1 ⊆ B(x)

such that H(n) is an (m + 1)-tuple of consecutive primes for infinitely many n. Here, as

before, 1 ≤ ν1 < · · · < νm+1 ≤ k. For any such n, writing

H(n) = {n+ bνj}m+1
j=1 = {pr+1, . . . , pr+m+1}

with some integer r, we have

δj = dr+j = pr+j+1 − pr+j = bνj+1
− bνj

for 1 ≤ j ≤ m. Then

j−1∏
i=1

δi =

j−1∏
i=1

(bνi+1
− bνi)

∣∣∣∣ ∏
1≤s<t≤νj

(bt − bs) = bνj+1 − bνj
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if 2 ≤ j ≤ m. On the other hand, using (2.3.1) we see that

(bνj+1 − bνj)
∣∣∣∣ νj+1−1∑

i=νj

(bi+1 − bi) = bνj+1
− bνj = δj.

Hence, δ1 · · · δj−1 | δj for 2 ≤ j ≤ m, which proves the first statement. To obtain runs of

consecutive prime gaps with

δmδm−1 · · · δj+1 | δj

for 1 ≤ j ≤ m− 1, consider instead the admissible k-tuple {x− bj}kj=1.

2.4 The Proof of Corollary 1.1.5

In this section, we prove a strengthening of Shiu’s Theorem.

Proof. Let m ≥ 2, let k be sufficiently large in terms of m. Since (a,D) = 1, there are

infinitely many primes in the arithmetic progression a mod D. Let q1 < · · · < qk be primes

congruent to a mod D, with q1 > k. Then B(x) = {x + qj}kj=1 is admissible. By Theorem

1.1.2, we deduce that there is some

H(x) = {x+ hj}mj=1 ⊆ B(x)

such that, for infinitely many n ∈ N, H(Dn) is an m-tuple of consecutive primes. These

consecutive primes lie in the arithmetic progression a mod D and are contained in an interval

of length

(Dn+ hm)− (Dn+ h1) = hm − h1,

as desired.
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3 THE PROOF OF THEOREM 1.5.2

In this chapter, we prove Theorem 1.5.2, which is unconditional. Upon assuming the

Generalized Riemann Hypothesis in Theorem 1.5.2, we exhibit gaps between consecutive

zeros of ζK(s) on the critical line which are at least
√

6 = 2.44949 . . . times the average

spacing. The proof appears in [89].

In 1926, Ingham [48] proved that for s = 1/2+it and |α|, |β| < 1/2, we have

∫ T

0

ζ(s+α)ζ(1−s+β)dt =

∫ T

0

(
ζ(1+α+β) +

(
t

2π

)−α−β
ζ(1−α−β)

)(
1 +O

(
t−

1
2

+ε
))
dt.

This ‘shifted’ moment reveals a beautiful underlying structure which allows one to deduce

lower order terms and moments of derivatives of ζ(s) via differentiation and Cauchy’s integral

formula. For instance, Ingham’s theorem can be used to show that, for fixed µ, ν ∈ N,

∫ T

0

ζ(µ)(1
2
+it)ζ(ν)(1

2
−it)dt =

(−1)µ+ν

µ+ν+1
T (log T )µ+ν+1 +O

(
T (log T )µ+ν

)
,

where ζ(µ)(s) denotes the µth derivative of ζ(s). We make use of a similar shifted moment

result for a Dedekind zeta-function of a quadratic number field due to Heap [46] to obtain

the mixed second moments of derivatives of ζK(s) on the critical line. We then combine these

results with an argument of R.R. Hall [40] to arrive at the conclusion of Theorem 1.5.2.
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3.1 Preliminary Results

The following shifted moment result for a Dedekind zeta-function of a quadratic

number field has recently been given by Heap [46].

Theorem 3.1.1. (Heap) Let K be the quadratic number field with discriminant d. Let

s = 1/2+it and α, β ∈ C such that |α|, |β| � 1/ log(
√
|d|T ). Then we have

∫ 2T

T

ζK(s+α)ζK(1−s+β) dt (3.1.1)

=

∫ 2T

T

{∏
p

(
1− 1

p2+2α+2β

)∏
p|d

(
1+

1

p1+α+β

)−1

ζ2
K(1+α+β)

+

(
t

2π

)−α−β
6

π2

∏
p|d

(
1− 1

p2

)−1∏
p|d

(
1− 1

p1+α+β

)
L2(1, χd)ζ(1+α+β)ζ(1−α−β)

+
1

dα+β

(
t

2π

)−α−β
6

π2

∏
p|d

(
1− 1

p2

)−1∏
p|d

(
1− 1

p1−α−β

)
L2(1, χd)ζ(1+α+β)ζ(1−α−β)

+
1

dα+β

(
t

2π

)−2α−2β∏
p

(
1− 1

p2−2α−2β

)∏
p|d

(
1+

1

p1−α−β

)−1

ζ2
K(1−α−β)

}
dt

+O
(
|d|εCdT log T

)
where the constant Cd is defined in (3.1.2).

Proof. This is a consequence of [46, Theorem 1], letting h = k = 1.

The proof of Theorem 1.5.2 requires asymptotic estimates of the mixed second mo-

ments of ζK(1
2

+ it) and ζ ′K(1
2

+ it) with a uniform error. We obtain these by way of the

following theorem, which is a consequence of Theorem 3.1.1.
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Theorem 3.1.2. Let K be the quadratic number field with discriminant d. Let T ≥ 2, and

µ, ν be non-negative integers. We have

∫ 2T

T

ζ
(µ)
K (1

2
+it)ζ

(ν)
K (1

2
−it) dt

=
(−1)µ+ν(2µ+ν+1−1)

(µ+ν+2)(µ+ν+1)
2CdT (log T )µ+ν+2 +O

(
µ!ν!|d|εCdT (log T )µ+ν+1

)
,

where the constant

Cd :=
6

π2

∏
p|d

(
1+

1

p

)−1

L2(1, χd). (3.1.2)

Special cases of Theorem 3.1.2 are known by the work of Motohashi [71] and Weinstein

[92], however we require the more general case to prove Theorem 1.5.2.

Proof of Theorem 3.1.2. Let ε > 0 be an arbitrary constant, s=1/2+it, and T ≥ 2 be fixed.

We first simplify the integral on the right-hand side of (3.1.1) by considering each factor of

each term of the integrand. Since α+β � 1/ log(
√
|d|T ), it follows that

d−α−β = 1 +O((α + β)|d|ε).

The Euler products on the right-hand side of (3.1.1) can be simplified as

∏
p

(
1− 1

p2±(α+β)

)
=
∏
p

(
1− 1

p2

)(
1 +O

(
(α + β)|d|ε

))
=

6

π2

(
1 +O

(
(α+β)|d|ε

))
,

∏
p|d

(
1+

1

p1±(α+β)

)−1

=
∏
p|d

(
1+

1

p

)−1(
1 +O

(
(α+β)|d|ε

))
,

and ∏
p|d

(
1− 1

p1±(α+β)

)
=
∏
p|d

(
1− 1

p

)(
1 +O

(
(α+β

)
|d|ε)

)
.
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The factorization given in (1.5.1) implies that

ζK (1± (α+β)) = L(1, χd)ζ (1± (α+β))

(
1 +O

(
(α+β)|d|ε

))

since |L(σ, χd)| � log |d| for |1− σ| � 1/ log |d|. (See Section 14 of the book by Davenport

[25].) Furthermore, since t ∈ [T, 2T ], we have that

(
t

2π

)−α−β
= T−α−β (1 +O(1/ log T )) .

Using these estimates, we find that

∫ 2T

T

ζK(s+α)ζK(1−s+β) dt

=

∫ 2T

T

 6

π2

∏
p|d

(
1+

1

p

)−1

L2(1, χd)ζ
2(1+α+β)

 dt

+ 2

∫ 2T

T

 6

π2

∏
p|d

(
1+

1

p

)−1

L2(1, χd)ζ(1+α+β)ζ(1−α−β)T−α−β

 dt

+

∫ 2T

T

 6

π2

∏
p|d

(
1+

1

p

)−1

L2(1, χd)ζ
2(1−α−β)T−2α−2β

 dt

+O
(
|d|εCdT log T

)
:= I1 + 2I2 + I3 +O

(
|d|εCdT log T

)
,

say. Since ζ(1−s) = 1/s+O(1), we can express the three integrals as

I1 = (α+β)−2CdT +O
(
|d|εCdT log T

)
, I2 = −(α+β)−2CdT

−α−β+1 +O
(
|d|εCdT log T

)
,

and

I3 = (α+β)−2CdT
−2α−2β+1 +O

(
|d|εCdT log T

)
.
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Finally, noting that

T−δ(α+β) =
∞∑
n=0

(−1)nδn(α+β)n(log T )n

n!
,

we simplify I1+2I2+I3 to conclude that

∫ 2T

T

ζK(s+α)ζK(1−s+β) dt = F (α+β;T ) +O
(
|d|εCdT log T

)
,

where

F (α+β;T ) := 2CdT
∞∑
n=0

(−1)n(α+β)n(log T )n+2

(n+ 2)!
{2n+1 − 1}. (3.1.3)

We now follow an argument of Ingham [48] to complete the proof. Let

R(α, β;T ) :=

∫ 2T

T

ζK(s+α)ζK(1−s+β) dt− F (α+β;T ). (3.1.4)

ThenR(α, β;T ) is an analytic function of the two complex variables α and β when <(α),<(β) <

1/2, and

R(α, β;T ) = O
(
|d|εCdT log T

)
(3.1.5)

holds by Theorem 3.1.1. Differentiating (3.1.4), it follows that

∫ 2T

T

ζ
(µ)
K (s+α)ζ

(ν)
K (1−s+β) dt =

∂µ+νF (α+β;T )

∂αµ∂βν
+Rµ,ν(α, β;T ), (3.1.6)

where µ and ν are fixed nonnegative integers and

Rµ,ν(α, β;T ) :=
∂µ+νR(α, β;T )

∂αµ∂βν
.
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Let C = {w ∈ C; |w − α| = 1/ log T}. By the Cauchy integral formula and (3.1.5), we have

∂µ

∂αµ
R(α, β;T ) =

µ!

2πi

∫
C

R(w, β;T )

(w − α)µ+1
dw

= O
(
µ!|d|εCdT (log T )µ+1

)
.

Appealing to the Cauchy integral formula once more, we deduce that

Rµ,ν(α, β;T ) :=
∂µ+ν

∂αµ∂βν
R(α, β;T ) = O

(
µ!ν!|d|εCdT (log T )µ+ν+1

)
.

Thus (3.1.6), with α=β=0, gives

∫ T

0

ζ
(µ)
K (1

2
+it)ζ

(ν)
K (1

2
−it) dt =

[
∂µ+νF (α+β;T )

∂αµ∂βν

]
α=β=0

+O
(
µ!ν!|d|εCdT (log T )µ+ν+1

)
,

(3.1.7)

and it remains only to calculate the first term on the right-hand side. By differentiating

(3.1.3) with respect to α and β and simplifying, we determine that

[
∂µ+νF (α+β;T )

∂αµ∂βν

]
α=β=0

=
(−1)µ+ν(2µ+ν+1 − 1)

(µ+ν+2)(µ+ν+1)
2CdT (log T )µ+ν+2. (3.1.8)

Theorem 3.1.2 now follows upon inserting (3.1.8) into (3.1.7).

We now demonstrate how to obtain the lower bound in Theorem 1.5.2. The proof is

a variation of a method of R. R. Hall [40] using some ideas of Bredberg [6]. We begin by

defining the function

f(t) := eivt log T ζK(1
2
+it), (3.1.9)

where v is a real constant that will be chosen later. By Stirling’s formula, f(t) mimics the

analogue of the Hardy Z-function for ζK(s). Fix K, and let γ̃ denote an ordinate of a zero of

ζK(s) on the critical line <(s)=1/2. Note that f(t) has the same zeros as ζK(1
2
+it), that is,

f(t) = 0 if and only if t = γ̃. Let {γ̃1, γ̃2, . . . , γ̃N} denote the set of distinct zeros of f(t) in
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the interval [T, 2T ] arranged in non-decreasing order and ignoring multiplicity. Furthermore,

let

κT = max{γ̃n+1 − γ̃n : T+1 ≤ γ̃n ≤ 2T−1},

and note that λK ≥ lim sup
T→∞

κT . Without loss of generality, we may assume that

γ̃1 − T � 1 and 2T − γ̃N � 1, (3.1.10)

as otherwise there exist zeros γ̃0 ≤ γ̃1 and γ̃N+1 ≥ γ̃N such that γ̃0− γ̃1 and γ̃N+1− γ̃N are

� 1, and Theorem 1.5.2 holds for this reason. In order to obtain a lower bound on κT , we

require the following lemma.

Lemma 3.1.3. Let y : [a, b]→ C be a continuously differentiable function and suppose that

y(a) = y(b) = 0. Then

∫ b

a

|y(x)|2 dx ≤
(
b− a
π

)2 ∫ b

a

|y′(x)|2 dx.

Proof. This is a variation of a well-known inequality of Wirtinger [43, Theorem 256] due to

Bredberg [6, Corollary 1].

3.2 The Proof of Theorem 1.5.2

With the above setup, we now prove Theorem 1.5.2.

Proof of Theorem 1.5.2. Let ε > 0 be a small positive constant which may vary from line to

line, and let f(t) be the function defined in (3.1.9). By the definition of κT , for each pair of

consecutive zeros of f(t) in the interval [T, 2T ], we have

∫ γ̃n+1

γ̃n

|f(t)|2 dt ≤ κ2
T

π2

∫ γ̃n+1

γ̃n

|f ′(t)|2 dt. (3.2.1)
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Summing both sides of the equation in (3.2.1) over n for n = 1, 2, . . . , N − 1, it follows that

∫ γ̃N

γ̃1

|f(t)|2 dt ≤ κ2
T

π2

∫ γ̃N

γ̃1

|f ′(t)|2 dt.

By Weyl’s bound for the zeta-function,

ζ(1
2
+it)� t

1
6

+ε,

and the subconvexity bound

L(1
2

+ it, χd)� |td|
3
16

+ε

due to Heath-Brown [47], we see that, for T ≤ t ≤ 2T and ε > 0,

|f(t)| � t
17
48

+ε|d|
3
16

+ε.

Therefore, by the assumption in (3.1.10), we have

∫ 2T

T

|f(t)|2 dt ≤ κ2
T

π2

∫ 2T

T

|f ′(t)|2 dt+O(|d|
3
8

+εT
17
24

+ε). (3.2.2)

Note that |f(t)|2 = |ζK(1
2
+it)|2 and

|f ′(t)|2dt = |ζ ′K(1
2
+it)|2 + v2 log2 T |ζK(1

2
+it)|2 + 2v log T ·Re

(
ζ ′K(1

2
+it)ζK(1

2
+it)

)
. (3.2.3)
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Theorem 3.1.2 implies that

∫ 2T

T

|ζK(1
2
+it)|2dt = CdT log2 T +O

(
|d|εCdT log T

)
, (3.2.4)

∫ 2T

T

ζ ′K(1
2
+it)ζK(1

2
+it)dt = −CdT log3 T +O

(
|d|εCdT log2 T

)
, (3.2.5)

and ∫ 2T

T

|ζ ′K(1
2
+it)|2dt =

7

6
CdT log4 T +O

(
|d|εCdT log3 T

)
, (3.2.6)

where Cd is the constant in (3.1.2). By combining the estimates in (3.2.2) – (3.2.6), we find

that

κ2
T

π2
≥ 6

6v2 − 12v + 7

1

log2 T

(
1 +O

(
|d|ε log−1 T

))
,

uniformly for |d| ≤ T
7
9
−ε. The choice of v = 1 minimizes 6v2 − 12v + 7, the minimum value

being 1. We conclude that

κT ≥
√

6π

log(
√
|d|T )

(
1 +O

(
|d|ε log−1 T

))
.

This completes the proof.
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4 THE PROOF OF THEOREM 1.5.4

In this chapter, we prove Theorem 1.5.4, that is, under the assumption of some

standard conjectures, we show that

∫ T

0

|L(1
2
+it, π1)|2k1 · · · |L(1

2
+it, πr)|2krdt� T (log T )k

2
1+···+k2r+ε

for any k1, . . . , kr > 0 and every ε > 0 when T is sufficiently large. This result was proved

in collaboration with Micah B. Milinovich and appears in [63].

There are a couple of aspects which make the proof of Theorem 1.5.4 different than

the proof of the analogous result for the Riemann zeta-function. First of all, we need to un-

derstand the correlations of the coefficients of distinct L-functions averaged over the primes.

Secondly, we need to handle the contribution of these coefficients at the prime powers. In

[85], assuming the Riemann hypothesis, an inequality for the real part of the logarithm of

the Riemann zeta-function is derived which depends only on the primes. In the case of

ζ(s), one can handle the contribution of the primes powers relatively easily. If we were

willing to assume the Ramanujan-Petersson Conjecture (given below) and the Generalized

Riemann Hypothesis for the symmetric square L-functions, then we could similarly derive

an inequality involving only the primes for the real part of the logarithms of the L-functions

in Theorem 1.5.4. In order to circumvent these additional assumptions, we must estimate

the contribution from the prime powers in a different way. To this end, we use a partial

result toward the Ramanujan-Petersson Conjecture for automorphic L-functions due to Luo,

Rudnick, and Sarnak [61] and also Hypothesis H (given below) which is known to hold for
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automorphic L-functions of small degree. Ideas similar to these were used for degree two

L-functions in [64].

4.1 Hypotheses and Conjectures

In this section we collect some hypotheses and conjectures. First, recall from Subsec-

tion 1.3.1 that for <(s) > 1, we have

L(s, π) :=
∞∑
n=1

aπ(n)

ns
=
∏
p

p prime

m∏
j=1

(
1− αj(p)

ps

)−1

and

−L
′

L
(s, π) =

∑
p`, `≥1

(
α`1(p) + · · ·+ α`m(p)

)
log p

p`s
=:

∞∑
n=1

Λπ(n)

ns
.

Ramanujan-Petersson Conjecture. The local parameters αj(p) satisfy |αj(p)| = 1 for

all but a finite number of primes p.

In general, this conjecture is open. Towards the Ramanujan-Petersson Conjecture,

Luo, Rudnick, and Sarnak [61] have shown that

|αj(p)| ≤ p1/2−1/(m2+1)

for all p. It follows that

|Λπ(n)| < mΛ(n)n1/2−1/(m2+1) (4.1.1)

where Λ(n) is the Von Mandgoldt function, defined by Λ(n) = log p if n = pj, j ≥ 1, and

Λ(n) = 0 otherwise. The bound in (4.1.1) is crucial to the proofs of Theorem 1.5.4 and

Theorem 1.6.1.

We will make use of Hypothesis H of Rudnick and Sarnak [79].
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Hypothesis H. Let j ≥ 2 be fixed, and let π be an irreducible cuspidal automorphic

representation of GL(m) over Q. Then we have

∑
p

|Λπ(pj)|2

pj
<∞.

Hypothesis H is known to hold for automorphic L-functions of small degree.

Theorem 4.1.1. Hypothesis H is true for m ≤ 4.

Proof. The case m = 1 is trivial, the case m = 2 follows from the work of Kim and Sarnak

[56], the case m = 3 is due to Rudnick and Sarnak [79], and the case m = 4 is due to Kim

[55].

Given distinct automorphic L-functions L(s, π) and L(s, π′), we need to understand

the correlation of their Dirichlet series coefficients averaged over the primes. Selberg [82] has

made the following conjecture (in a different context).

Selberg’s Orthogonality Conjectures. Let π and π′ be two irreducible unitary cuspidal

automorphic representations of GL(m) and GL(m′) over Q, respectively, and let x ≥ 3.

Then

∑
p≤x

aπ(p)aπ′(p)

p
=
∑
p≤x

Λπ(p)Λπ′(p)

p log2 p
=


log log x+O(1), if π ∼= π′,

O(1), if π 6∼= π′.

The following result allows us to use Selberg’s Orthogonality Conjectures in the proofs

of Theorems 1.5.4 and 1.6.1.

Theorem 4.1.2. Let π and π′ be two irreducible unitary cuspidal automorphic representa-

tions of GL(m) and GL(m′) over Q, respectively. If L(s, π) and L(s, π′) satisfy Hypothesis

H, then the coefficients of these L-functions satisfy Selberg’s orthogonality conjectures. In

particular, Selberg’s orthogonality conjectures hold if max(m,m′) ≤ 4.
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Proof. This was proved in the special case where at least one of π or π′ is self-contragredient

in [58, 59], and in full generality by Liu and Ye in [60]. See also Avdispahić and Smajlović

[3].

4.2 Lemmas

In this section, we state three lemmas that will be used in the proof of Theorem 1.5.4.

Lemma 4.2.1. If {bn} is a sequence of complex numbers such that
∑
|bn| and

∑
n|bn|2 are

convergent, then

∫ T

0

∣∣∣∣ ∞∑
n=1

bnn
−it
∣∣∣∣2dt = T

∞∑
n=1

|bn|2 +O

( ∞∑
n=1

n|bn|2
)

where the implied constant is absolute.

Proof. This is Montgomery and Vaughan’s mean-value theorem for Dirichlet polynomials

(see Corollary 3 of [67]).

Lemma 4.2.2. Let T be large, x ≥ 2, and let ` and j be natural numbers satisfying x` ≤ T j.

Then for any complex numbers b(p) we have

1

T

∫ 2T

T

∣∣∣∣∣∑
pj≤x

b(p)

pj(σ+it)

∣∣∣∣∣
2`

dt� `!

∑
pj≤x

|b(p)|2

p2jσ


`

where j is fixed and the sum runs over the primes p.

Proof. This is a consequence of Lemma 4.2.1. The case j = 1 essentially corresponds to

Lemma 3 of Soundararajan [85]. For any s ∈ C, write

{∑
p≤y

b(p)

ps

}`

=
∑
n≤y`

βy,`(n)

ns
,
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where βy,`(n) = 0 unless n is the product of ` (not necessarily distinct) primes, all less than

or equal to y. In the later case, writing

n =
r∏
i=1

pαii ,

where p1 < . . . < pr ≤ y and α1 + · · ·+ αr = `, we have

βy,`(n) =

(
`

α1, . . . , αr

) r∏
i=1

b(pi)
αi .

Thus, we have

∫ 2T

T

∣∣∣∣∣∑
p≤y

b(p)

pj(σ+it)

∣∣∣∣∣
2`

dt =

∫ 2T

T

∣∣∣∣∣ ∑
n≤y`

βy,`(n)

njσ+jit

∣∣∣∣∣
2

dt =
1

j

∫ 2jT

jT

∣∣∣∣∣ ∑
n≤y`

βy,`(n)

njσ+iu

∣∣∣∣∣
2

du,

where in the last step we have made the variable change u = jt. If y` ≤ T , then Lemma

4.2.1 implies that

∫ 2T

T

∣∣∣∣∣∑
p≤y

b(p)

pj(σ+it)

∣∣∣∣∣
2`

dt� 2jT−jT
j

∑
n≤y`

|βy,`(n)|2

n2jσ
� T

∑
n≤y`

|βy,`(n)|2

n2jσ
.

We now follow the combinatorial argument appearing in the proof of Lemma 3 of [85]. We

have

∑
n≤y`

|βy,`(n)|2

n2jσ
=

∑
p1<...<pr≤y

∑
α1,...,αr≥1
α1+...+αr=`

(
`

α1, . . . , αr

)2 |b(p1)|2α1 · · · |b(pr)|2αr

p2jσα1

1 · · · p2jσαr
r

≤ `!
∑

p1<...<pr≤y

∑
α1,...,αr≥1
α1+...+αr=`

(
`

α1, . . . , αr

)
|b(p1)|2α1 · · · |b(pr)|2αr

p2jσα1

1 · · · p2jσαr
r

= `!

(∑
p≤y

|b(p)|2

p2jσ

)`

,
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that is ∑
n≤y`

|βy,`(n)|2

n2jσ
� `!

{∑
p≤y

|b(p)|2

p2jσ

}`

.

Combining estimates, the lemma follows.

Lemma 4.2.3. Assume that either L(s, π) is the Riemann zeta-function or that Φ(s, π)

has no pole or zero at s = 0, 1. Let λ0 = 0.4912 . . . denote the unique positive real number

satisfying e−λ0 = λ0+λ2
0/2. Then, assuming the Generalized Riemann Hypothesis for L(s, π),

for all λ0 ≤ λ ≤ log x/2 and log x ≥ 2, we have

log |L(1
2
+it, π)| ≤ <

∑
n≤x

Λπ(n)

n
1
2

+ λ
log x

+it log n

log x/n

log x
+

(1 + λ)

2

m log T

log x
+O

( 1

log x

)

for T ≤ t ≤ 2T and T sufficiently large, where the implied constant in the error term depends

only on π.

Proof. The case where L(s, π) corresponds to the Riemann zeta-function is due to Soundarara-

jan [85], and the other cases are a consequence of Theorem 2.1 of Chandee [12].

4.3 The Frequency of Large Values of
∏

1≤i≤k |L(1
2
+it, πi)|

In this section, we state and prove a value distribution result for a linear combination

of distinct primitive L-functions which will be used to deduce Theorem 1.5.4. This result is

an analogue of the main theorem in [85], and the proof given here is an expanded version of

the argument appearing in [63].

Let L(s, π1), . . . , L(s, πr) be r distinct primitive L-functions (as in Theorem 1.5.4) of

degrees m1, . . . ,mr, respectively, let

∆ = max
{
m2

1+1, . . . ,m2
r+1

}
,
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and let

B = k1m1 + · · ·+ krmr + 1. (4.3.1)

Define the set

A(T, V ) = {t ∈ [T, 2T ] : k1 log |L(1
2
+it, π1)|+ · · ·+ kr log |L(1

2
+it, πr)| ≥ V }

and the quantity

W = (k2
1 + · · ·+ k2

r) log log T.

Note that

∫ 2T

T

|L(1
2
+it, π1)|2k1 · · · |L(1

2
+it, πr)|2kr dt = −

∫ ∞
−∞

exp(2V ) dmeas(A(T, V ))

= 2

∫ ∞
−∞

exp(2V ) meas(A(T, V )) dV.

(4.3.2)

To prove Theorem 1.5.4, it suffices to estimate the measure of A(T, V ) for all V ≥ 3 when

T is large. Note that the definitions of A(T, V ) and W depend on our choices of k1, . . . , kr,

which we consider to be fixed throughout the proof Proposition 4.3.1 below.

We prove estimates for the size of A(T, V ) using Lemmas 4.2.2 and 4.2.3. The con-

tribution to the size of A(T, V ) coming from the primes in the sum on the right-hand side of

the inequality in Lemma 4.2.3 is estimated following the method of Soundararajan in [85],

and the contribution from the prime powers pj with j > ∆ is estimated trivially. More

care is necessary to handle the contribution from the prime powers pj with 2 ≤ j ≤ ∆, and

this is where we appeal to (4.1.1) and Hypothesis H. This allows us to circumvent using the

Ramanujan-Petersson Conjecture.

As might be expected, the proof of Theorem 1.5.4 relies on understanding the cor-

relations between coefficients of distinct automorphic L-functions. The key ingredient to

the proof of the proposition below (and hence Theorem 1.5.4) is the fact that the Selberg
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orthogonality conjectures imply that

∑
p≤z

|k1Λπ1(p) + · · ·+ krΛπr(p)|2

p log2 p
= (k2

1 + · · ·+ k2
r) log log z +O(1) (4.3.3)

as z →∞, which can be seen by expanding the square on the left hand side of (4.3.3).

Proposition 4.3.1. Let L(s, π1), . . . , L(s, πr) be L-functions attached to distinct irreducible

cuspidal automorphic representations, πj, of GL(mj) over Q with unitary central character,

and assume that these L-functions satisfy the Generalized Riemann Hypothesis. If max
1≤j≤r

mj ≤

4 or each of the L-functions satisfies Hypothesis H, then the following inequalities hold. If
√
W ≤ V ≤ W

B2 , we have

meas(A(T, V ))� T
V√
W

exp

(
−V

2

W

(
1− 4

logW

))
;

if W
B2 ≤ V ≤ 1

2B2W logW , we have

meas(A(T, V ))� T
V√
W

exp

(
−V

2

W

(
1− 7B2V

4W logW

)2
)

;

and if 1
2B2W logW ≤ V , we have

meas(A(T, V ))� T exp

(
− 1

129B2
V log V

)

for any k1, . . . , kr > 0 when T is sufficiently large.

Proof of Proposition 4.3.1. Our proof is similar to the proof of the main theorem of Soundarara-

jan in [85], and our notation follows that of [85] and Chandee [13]. Let L(s, π) be a primitive

L-function of degree m. Let λ = λ0 < 1/2 and ε < (1− 2λ0)/3. Choosing x = (log T )1−ε, it
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follows from Lemma 4.2.3 and (4.1.1) that

log |L(1
2
+it, π)| ≤ m(log T )1−ε +

(1+λ0)m log T

2(1−ε) log log T
+O

(
1

(1−ε) log log T

)
≤ 3m

4

log T

log log T

for sufficiently large T . Therefore, we see that

k1 log |L(1
2
+it, π1)|+ · · ·+ kr log |L(1

2
+it, πr)| ≤

3(k1m1+· · ·+krmr)

4

log T

log log T

when T is large. Recalling the definition of B in (4.3.1), we may assume that

√
W ≤ V ≤ 3(B−1)

4

log T

log log T

while proving the proposition. Note that B > 1 (a fact that is useful when deriving the

estimates below). Define a parameter A as

A =



B

2
logW, if

√
W ≤ V ≤ W

B2 ,

1

2BV
W logW, if W

B2 < V ≤ 1
2B2W logW,

B, if V > 1
2B2W logW,

and let x = TA/V and z = x1/ log log T . Choosing λ = 1/2 in Lemma 4.2.3, we deduce that

k1 log |L(1
2
+it, π1)|+ · · ·+ kr log |L(1

2
+it, πr)|

≤ |S1(t)|+ |S?1(t)|+
∑

2≤j≤∆

|Sj(t)|+
3(B−1)

4

V

A
+O(1),

(4.3.4)
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where

S1(t) =
∑
p≤z

(k1Λπ1(p) + · · ·+ krΛπr(p))

p
1
2

+ λ
log x

+it log p

log(x/p)

log x
,

S?1(t) =
∑
z<p≤x

(k1Λπ1(p) + · · ·+ krΛπr(p))

p
1
2

+ λ
log x

+it log p

log(x/p)

log x
,

and

Sj(t) =
∑
pj≤x

(k1Λπ1(p
j) + · · ·+ krΛπr(p

j))

pj(
1
2

+ λ
log x

+it) log pj

log(x/pj)

log x

for 2 ≤ j ≤ ∆. The contribution from the prime powers for which j > ∆ is O(1). Indeed,

(4.1.1) implies that

|k1Λπ1(p
j) + · · ·+ krΛπr(p

j)| � (k1m1 + · · ·+ krmr)(log p)pj/2−j/∆,

and hence

∑
pj≤x
j>∆

|k1Λπ1(p
j) + · · ·+ krΛπr(p

j)|
pj(

1
2

+ λ
log x

+it) log pj

log(x/pj)

log x
�
∑
pj≤x
j>∆

|k1Λπ1(p
j) + · · ·+ krΛπr(p

j)|
jpj/2 log p

� (B − 1)
∑
pj≤x
j>∆

1

pj/∆

� B.

Let

V1 := V

(
1− 7(B−1)

8A

)
, V ?

1 = Vj :=
(B−1)V

8∆A

for 2 ≤ j ≤ ∆. Note that if t ∈ A(T, V ), then at least one of the following inequalities holds:

|S?1(t)| ≥ V ?
1 or |Sj(t)| ≥ Vj
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for some j = 1, 2, . . . ,∆. To see why, suppose (towards contradiction) that |S?1(t)| < V ?
1 and

|Sj(t)| < Vj for all 1 ≤ j ≤ ∆. Then, if t ∈ [T, 2T ], we have

V ≤ k1 log |L(1
2
+it, π1)|+ · · ·+ kr log |L(1

2
+it, πr)|

≤ |S1(t)|+ |S?1(t)|+
∑

2≤j≤∆

|Sj(t)|+
3(B − 1)

4

V

A
+O(1)

< V

(
1− 7(B − 1)

8A

)
+

(B − 1)V

8A
+

3(B − 1)

4

V

A
+O(1)

= V +O(1),

a contradiction. If we define

Nj(T, Vj) := meas{t ∈ [T, 2T ] : |Sj(t)| ≥ Vj}

for j = 1, 2, . . . ,∆ and defineN?
1 (T, V ?

1 ) similarly, then we can boundNj(T, Vj) andN?
1 (T, V ?

1 )

using Lemma 4.2.2 since Chebyshev’s inequality implies that

Nj(T, Vj) ≤ (Vj)
−2`

∫ 2T

T

|Sj(t)|2` dt

and

N?
1 (T, V ?

1 ) ≤ (V ?
1 )−2`

∫ 2T

T

|S?1(t)|2` dt

for every non-negative integer `.
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Let us first estimate N1(T, V1). Letting ` be any natural number such that z` ≤ T,

Lemma 4.2.2 and (4.3.3) imply that

∫ 2T

T

|S1(t)|2`dt� T`!

(∑
p≤z

|k1Λπ1(p) + · · ·+ krΛπr(p)|2

p log2 p

)`

� T`!
(
(k2

1 + · · ·+ k2
r) log log z +O(1)

)`
� T`!

(
(k2

1 + · · ·+ k2
r) log log T

)`
� T
√
`

(
`(k2

1 + · · ·+ k2
r) log log T

e

)`
� T
√
`

(
`W

e

)`
.

Thus we have

N1(T, V1)� T
√
`

(
`W

eV 2
1

)`
. (4.3.5)

We consider separately the two cases where V ≤ W 2

B4 and V > W 2

B4 . In the first case,

we choose ` = bV
2
1

W
c in (4.3.5). This choice of ` is permissible since ` = bV

2
1

W
c ≤ V log log T

A
for

each range of V , which we now justify.

Case 1:
√
W ≤ V ≤ W

B2

In this range, A = B
2

logW, and we have

` ≤ V 2
1

W
≤ V 2

W
≤ V ≤ V log log T

A

when T is sufficiently large. Thus ` = bV
2
1

W
c is permissible in the range

√
W ≤ V ≤ W

B2 .

Case 2: W
B2 < V ≤ 1

2B2W logW

In this range, A = 1
2BV

W logW. For large T , we have

logW ≤ 2B log log T.

56



Thus, it follows that

V 2

W
≤ V 2

W
· 2B log log T

logW
=
V log log T

A
.

Thus ` = bV
2
1

W
c is permissible in the range W

B2 < V ≤ 1
2B2W logW .

Case 3: 1
2B2W logW < V ≤ W 2

B4

In this range, A = B. Recalling the definition of B given in (4.3.1), we see that

W

B3
≤ W

k2
1 + · · ·+ k2

r

= log log T.

It follows that

V 2

W
≤ VW

B4
≤ V log log T

B
.

Therefore ` = bV
2
1

W
c is permissible in the range 1

2B2W logW < V ≤ W 2

B4 . Thus we may take

` = bV
2
1

W
c in (4.3.5) and find

N1(T, V1)� T
V√
W

exp

(
−V

2
1

W

)
, V ≤ W 2

B4
. (4.3.6)

When V > W 2

B4 , we choose ` = b10V c in (4.3.5). This choice of ` is permissible, since

for sufficiently large T

10V ≤ V log log T

B
,
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and B = A in this range. Thus, taking ` = b10V c in (4.3.5), we have

N1(T, V1)� T
√

10V

(
10VW

eV 2
1

)10V

� T exp

(
1

2
log V − 10V log

(
eV 2

1

10VW

))
� T exp

(
1

2
log V − 10V log

(
eV (1− 7(B−1)

8B
)2

10W

))

� T exp

(
1

2
log V − 10V log V + 10V logW

)
.

Since V > W 2

B4 , we have 2 logW < log V + 4 logB . Thus

10 logW < 5 log V + 20 logB.

Hence

N1(T, V1)� T exp

(
1

2
log V − 10V log V + 10V logW

)
� T exp (V log V − 10V log V + 5V log V )

that is,

N1(T, V1)� T exp(−4V log V ), V >
W 2

B4
. (4.3.7)

Combining (4.3.6) and (4.3.7), we conclude that

N1(T, V1)� T
V√
W

exp

(
−V

2
1

W

)
+ T exp(−4V log V ) (4.3.8)

for all V .

58



Next, we find an upper bound for N?
1 (T, V ?

1 ). For any natural number ` with x` ≤ T ,

Lemma 4.2.2 and (4.3.3) imply that

∫ 2T

T

|S?1(t)|2` dt� T`!

( ∑
z≤p≤x

|k1Λπ1(p) + · · ·+ krΛπr(p)|2

p log2 p

)`

� T`!
(
(k2

1 + · · ·+ k2
r)(log log x− log log z) +O(1)

)`
� T

(
`(k2

1 + · · ·+ k2
r) log log log T +O(1)

)`
� T

(
2`(k2

1 + · · ·+ k2
r) log log log T

)`
when T is large. Choosing ` = bV

A
c, which is certainly less than or equal to V

A
, we find that

N?
1 (T, V ?

1 )� TV −2`(8∆A)2`(2` log log log T )`

� TV −2V/AA2V/A

(
2V

A
log log log T

)V/A
� TV −2V/AV V/AA2V/AA−V/A(log log log T )V/A

= TV −V/AAV/A(log log log T )V/A.

Since
√
W ≤ V , we have W = (k2

1 + · · ·+ k2
r) log log T ≤ V 2. Thus

log log log T ≤ log V 2 − log(k2
1 + · · ·+ k2

r)� log V

and

A ≤ B logW

2
≤ B log V 2

2
� log V.
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Thus A log log log T � log2 V. Furthermore, if T is sufficiently large, then log2 V ≤ V 1/2.

Thus

N?
1 (T, V ?

1 )� TV −V/A(A log log log T )V/A

� TV −V/A(log2 V )V/A

� TV −V/A(V 1/2)V/A

= TV −V/2A,

that is,

N?
1 (T, V ?

1 )� T exp

(
−V log V

2A

)
. (4.3.9)

Finally, we find an upper bound for Nj(T, Vj) for each 2 ≤ j ≤ ∆. For x1/j ≤ T ,

Lemma 4.2.2 and Hypothesis H imply that

∫ 2T

T

|Sj(t)|2` dt� T`!

∑
pj≤x

|k1Λπ1(p
j) + · · ·+ krΛπr(p

j)|2

j2pj log2 p

`

� T
(
`Cj(k

2
1 + · · ·+ k2

r)
)`
,

for each fixed j, where Cj is a constant (depending on j). Let

Cmax = max
2≤j≤∆

Cj

be an absolute constant. Then for every 2 ≤ j ≤ ∆, we have

∫ 2T

T

|Sj(t)|2` dt� T
(
` Cmax(k2

1 + · · ·+ k2
r)
)`
.

Comparing this upper bound to the upper bound for
∫ 2T

T
|S?1(t)|2`dt, we conclude that

Nj(T, Vj)� T exp

(
−V log V

2A

)
, (4.3.10)
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for each 2 ≤ j ≤ ∆. By combining (4.3.8), (4.3.9), and (4.3.10), we have that

meas(S(T, V ))� T
V√
W

exp

(
−V

2
1

W

)
+ T exp(−4V log V ) + T exp

(
−V log V

2A

)
. (4.3.11)

We simplify the right-hand side of (4.3.11) by considering each of the three ranges of

V specified in the definition of A.

Range 1:
√
W ≤ V ≤ W

B2

Since V ≤ W 2/B4, we have

meas(S(T, V ))� T
V√
W

exp

(
−V

2
1

W

)
+ T exp

(
−V log V

2A

)
.

By the definition of V1, we have

V√
W

exp

(
−V

2
1

W

)
=

V√
W

exp

(
−V 2

W

(
1− 7(B − 1)

4B logW

)2
)

=
V√
W

exp

(
−V

2

W

(
1− 7(B − 1)

2B logW
+

49(B − 1)2

16B2 log2W

))
� V√

W
exp

(
−V

2

W

(
1− 7(B − 1)

2B logW

))
� V√

W
exp

(
−V 2

W

(
1− 4

logW

))
.

Furthermore, in this range we have

V 2
1

W
≤ V log V

2A
=

V log V

B logW
.

It follows that

exp

(
−V log V

2A

)
� V√

W
exp

(
−V

2
1

W

)
.

Thus we have

meas(S(T, V ))� T
V√
W

exp

(
−V

2

W

(
1− 4

logW

))
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for
√
W ≤ V ≤ W

B2 .

Range 2: W
B2 ≤ V ≤ 1

2B2W logW

In this range, we have

meas(S(T, V ))� T
V√
W

exp

(
−V 2

1

W

)
+ T exp

(
−V log V

2A

)
.

By the definition of V1, we can estimate the first term as

T
V√
W

exp

(
−V 2

1

W

)
= T

V√
W

exp

(
−V 2

W

(
1− 7B(B − 1)V

4W logW

)2
)

� T
V√
W

exp

(
−V 2

W

(
1− 7B2V

4W logW

)2
)
.

Since

V 2
1

W
≤ V log V

2A

in this range, we have that

exp

(
−V log V

2A

)
� V√

W
exp

(
−V 2

1

W

)
.

Thus

meas(S(T, V ))� T
V√
W

exp

(
−V

2

W

(
1− 7B2V

4W logW

)2
)

for W
B2 ≤ V ≤ 1

2B2W logW .

Range 3: V > 1
2B2W logW

In this range, we have

meas(S(T, V ))� T
V√
W

exp

(
−V 2

1

W

)
+ T exp (−4V log V ) + T exp

(
−V log V

2A

)
. (4.3.12)
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Using the definition of V1, we have

V√
W

exp

(
−V 2

1

W

)
=

V√
W

exp

(
−V 2

W

(
1− 7(B − 1)

8B

)2
)

≤ V√
W

exp

(
−V 2

64W

)
� exp

(
−V 2

64W
+ log V

)
� exp

(
−VW logW

128B2W
+ log V

)
� exp

(
−V log V

129B2

)
,

where we have used the bound V > 1
2B2W logW in the penultimate step. To estimate

the second term on the right-hand side of (4.3.12), note that since B > 1, it is true that

1
129B2 ≤ 4. Thus

T exp (−4V log V )� T exp

(
−V log V

129B2

)
.

To estimate the third term on the right-hand side of (4.3.12), note that since B > 1, it is

true that 1
129B2 ≤ 1

2A
= 1

2B
. Thus

T exp

(
−V log V

2A

)
� T exp

(
−V log V

129B2

)
.

Hence,

meas(S(T, V ))� exp

(
−V log V

129B2

)
for all V > 1

2B2W logW . The proposition now follows.

4.4 Proof of Theorem 1.5.4

We now use Proposition 4.3.1 and (4.3.2) to prove Theorem 1.5.4.
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The Proof of Theorem 1.5.4. We will first show that Proposition 4.3.1 implies that

meas(A(T, V ))�


T (log T )ε exp

(
−V 2

W

)
, if 3 ≤ V ≤ 256W

B2 ,

T (log T )ε exp
(
−4V
B2

)
, if V > 256W

B2 .

(4.4.1)

This weaker version of the proposition is enough to establish the theorem. We first consider

the case where 3 ≤ V ≤ 256W
B2 .

Range 1:
√
W ≤ V ≤ W

B2

By Proposition 4.3.1, we have

meas(A(T, V ))� T
V√
W

exp

(
−V 2

W

(
1− 4

logW

))
� T

√
W

B2
exp

(
−V 2

W

)
exp

(
4V 2

W logW

)
� T
√
W exp

(
−V 2

W

)
exp

(
4W

B4 logW

)
� T (log T )ε exp

(
−V 2

W

)
exp

(
log log T

(
4(k2

1 + · · ·+ k2
r)

B4 logW

))
� T (log T )ε exp

(
−V 2

W

)
.

Range 2: W
B2 ≤ V ≤ 256W

B2 ≤ W logW
2B2

By Proposition 4.3.1, we have

meas(A(T, V ))� T
V√
W

exp

(
−V 2

W

(
1− 7B2V

4W logW

)2
)

� T

√
W

B2
exp

(
−V 2

W

(
1− 7B2V

2W logW
+

49B4V 2

16W 2 log2W

))
� T (log T )ε exp

(
−V 2

W

)
exp

(
7B2(256)3W

2 logW
− 49W

16B4W 3 log2W

)
� T (log T )ε exp

(
−V 2

W

)
exp

(
W

(
7B2(256)3

2 logW
− 49

16B4 log2W

))
� T (log T )ε exp

(
−V 2

W

)
.

64



Since logW →∞ and T →∞, it is not possible to have the case W logW
2B2 ≤ V ≤ 256W

B2 .

Thus we have proven (4.4.1) in the range 3 ≤ V ≤ 256W
B2 .

We now consider the second case where V > 256W
B2 . First, note that the case

√
W ≤

256W
B2 ≤ V ≤ W

B2 is not possible.

Range 2: W
B2 ≤ 256W

B2 ≤ V ≤ W logW
2B2

By Proposition 4.3.1, we have

meas(A(T, V ))� T
V√
W

exp

(
−V 2

W

(
1− 7B2V

4W logW

)2
)

� T
W logW

2B2
√
W

exp

(
−256W

B2W
V

(
1− 7B2W logW

8B2W logW

)2
)

� T (log T )ε exp

(
−256

64B2
V

)
� T (log T )ε exp

(
−4V

B2

)
.

Range 3: W logW
2B2 ≤ 256W

B2 ≤ V

By Proposition 4.3.1, we have

meas(A(T, V ))� T exp

(
−1

129B2
V log V

)
� T (log T )ε exp

(
−4V

B2

)
.

We now use these cruder bounds on meas(A(T, V )) to prove Theorem 1.5.4. Write

∫ ∞
−∞

exp(2V ) meas(A(T, V ))dV = I1 + I2 + I3,

where

I1 =

∫ 3

−∞
exp(2V ) meas(A(T, V ))dV, I2 =

∫ 256W/B2

3

exp(2V ) meas(A(T, V ))dV,
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and

I3 =

∫ ∞
256W/B2

exp(2V ) meas(A(T, V ))dV.

By definition, meas(A(T, V )) ≤ T and thus I1 � T. Applying the bounds for meas(A(T, V ))

given in (4.4.1) to I2 and I3, it follows that

I2 � T (log T )ε
∫ 256W/B2

3

exp

(
2V − V 2

W

)
dV

� T (log T )εeW256W

� T (log T )k
2
1+···k2r+ε,

and similarly that I3 � T (log T )ε. Consequently, these estimates imply that

∫ 2T

T

|L(1
2

+ it, π1)|2k1 · · · |L(1
2

+ it, πr)|2krdt = 2
(
I1 + I2 + I3

)
� T (log T )k

2
1+···+k2r+ε.

Theorem 1.5.4 now follows by summing over the dyadic intervals [T
2
, T ], [T

4
, T

2
], [T

8
, T

4
], . . . .
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5 THE PROOF OF THEOREM 1.5.6

In this section, we modify the proof of Theorem 1.5.4 to deduce Theorem 1.5.6.

Throughout this section, let K be a finite extension of Q, and let ζK(s) be the associated

Dedekind zeta-function. As before, our starting point is the observation that

∫ 2T

T

|ζK(1
2
+it)|2k dt = 2

∫ ∞
−∞

exp(2V ) meas(K(T, V )) dV (5.0.1)

where

K(T, V ) = {t ∈ [T, 2T ] : k log |ζK(1
2
+it)| ≥ V }.

In order to bound the measure of K(T, V ), we need analogues of Lemma 4.2.3 and (4.3.3)

for ζK(s).

5.1 Lemmas

For <(s) > 1, define

ζ ′K
ζK

(s) :=
d

ds
log ζK(s) = −

∞∑
n=1

ΛK(n)

ns
.

Since ζK(s) satisfies the Ramanujan-Petersson conjecture, we have

|ΛK(n)| ≤ [K : Q]Λ(n). (5.1.1)

Then the following analogue of Lemma 4.2.3 holds.
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Lemma 5.1.1. Let λ0 = 0.4912 . . . denote the unique positive real number satisfying e−λ0 =

λ0 + λ2
0/2. Then, assuming the generalized Riemann hypothesis for ζK(s), for all λ0 ≤ λ ≤

log x/2 and log x ≥ 2, we have

log |ζK(1
2
+it)| ≤ <

∑
n≤x

ΛK(n)

n
1
2

+ λ
log x

+it log n

log x/n

log x
+

(1 + λ)

2

[K : Q] log T

log x
+O

( 1

log x

)

for T ≤ t ≤ 2T and T sufficiently large, where the implied constant in the error term depends

only on K.

Proof. This is a consequence of Theorem 2.1 of Chandee [12].

The analogue of (4.3.3) follows from the Chebotarev density theorem.

Lemma 5.1.2. Let K be a finite Galois extension of Q, and let p denote a rational prime.

Then ∑
p≤x

rK(p)2 ∼ [K : Q]
∑
p≤x

1

as x→∞, and in particular

∑
p≤x

rK(p)2

p
∼ [K : Q] log log x. (5.1.2)

Proof. Let (p) denote the principal ideal in OK generated by p. Then

(p) = Pe1
1 · · ·Per

r ,

where the Pi are the distinct prime ideals in OK lying above p with norm pfi . It follows that

r∑
i=1

eifi = [K : Q].

If p is unramified in K, then e1 = · · · = er = 1. Since K is Galois, all the Pi lying above

p are conjugate. Thus f1 = · · · = fr = f , say. Therefore, for unramified primes p, we see
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that rK(p) 6= 0 if and only if f = 1. In this case, p completely splits, r = [K : Q], and hence

rK(p) = [K : Q]. That is, for unramified primes p, we have

rK(p) =


[K : Q], if and only if p splits completely,

0, otherwise.

Since there are only a finite number of ramified primes, it follows that

∑
p≤x

rK(p)2 =
∑
p≤x

p unramified

rK(p)2 +O(1) =
∑
p≤x

p splits completely

[K : Q]2 +O(1).

On the other hand, the Chebotarev density theorem implies that

∑
p≤x

p splits completely

1 ∼ 1

[K : Q]

∑
p≤x

1,

as x→∞. Thus, ∑
p≤x

rK(p)2 ∼ [K : Q]
∑
p≤x

1,

proving the first assertion of the lemma. By the prime number theorem, we have

∑
p≤x

rK(p)2 ∼ [K : Q]x

log x

as x→∞. The claim in (5.1.2) now follows by partial summation.

We note here that in order to prove Theorem 1.5.6, it is not necessary to derive an

asymptotic formula for the sum in (5.1.2). An upper bound of the form

∑
p≤x

rK(p)2

p
≤ [K : Q] log log x+O(1)
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for the sum in (5.1.2) would be sufficient and is more easily derived. For instance, since

0 ≤ rK(p) ≤ [K : Q], we see that

∑
p≤x

rK(p)2

p
≤ [K : Q]

∑
p≤x

rK(p)

p
≤ [K : Q] log log x+O(1)

by Landau’s Prime Ideal Theorem.

5.2 The Frequency of Large Values of |ζK(1
2

+ it)|

Define the set

K(T, V ) = {t ∈ [T, 2T ] : k log |ζK(1
2

+ it)| ≥ V },

and choose

W = k2[K : Q] log log T, B = k[K : Q] + 1, and ∆ = 2,

since the Ramanujan-Petersson conjecture holds for ζK(s). Note that B > 1 for all k > 0.

We prove estimates for the size of K(T, V ) using the previous lemmas.

Proposition 5.2.1. Let K be a Galois extension of Q. Assume the generalized Riemann

hypothesis for ζK(s). Then, for sufficiently large T , if
√
W ≤ V ≤ W 2

B
, we have

meas(S(T, V ))� T
V√
W

exp

(
−V

2

W

(
1− 4

logW

))
;

if W
B2 ≤ V ≤ 1

2B2W logW , we have

meas(S(T, V ))� T
V√
W

exp

(
−V

2

W

(
1− 7B2V

4W logW

)2
)

;
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and if 1
2B2W logW ≤ V , we have

meas(S(T, V ))� T exp

(
−1

129B2
V log V

)

for any k > 0 when T is sufficiently large. The implied constants in each range depend on k

and [K : Q].

Proof. The proof is analogous to the proof of Proposition 4.3.1. Let K be a Galois extension

of Q, and let ζK(s) denote the associated Dedekind zeta-function. Let λ = λ0 < 1/2 and

ε < (2− 4λ0)/3. Choosing x = (log T )2−ε, it follows from Lemma 5.1.1 and (5.1.1) that

log |ζK(1
2

+ it)| ≤ [K : Q](log T )1−ε +
(1 + λ0)[K : Q] log T

2(2− ε) log log T
+O

(
1

(2− ε) log log T

)
≤ 3[K : Q]

8

log T

log log T

for sufficiently large T . Therefore, we see that

k log |ζK(1
2

+ it)| ≤ 3k[K : Q]

8

log T

log log T

when T is large. We can thus assume that

√
W ≤ V ≤ 3(B − 1)

8

log T

log log T
(5.2.1)

while proving the proposition. As in the proof of Proposition 4.3.1, define a parameter, A,

as

A =



B

2
logW, if

√
W ≤ V ≤ W

B2 ,

1

2BV
W logW, if W

B2 < V ≤ 1
2B2W logW,

B, if V > 1
2B2W logW,
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and let x = TA/V and z = x1/ log log T . Choosing λ = 1/2 in Lemma 5.1.1, we have

k log |ζK(1
2

+ it)| ≤ |S1(t)|+ |S?1(t)|+ |S2(t)|+ 3(B − 1)

4

V

A
+O(1),

where

S1(t) =
∑
p≤z

kΛK(p)

p
1
2

+ λ
log x

+it log p

log(x/p)

log x
,

S?1(t) =
∑
z<p≤x

kΛK(p)

p
1
2

+ λ
log x

+it log p

log(x/p)

log x
,

and

S2(t) =
∑
p2≤x

kΛK(p)

p1+ 2λ
log x

+2it log pj

log(x/pj)

log x
.

Since the Ramanujan-Petersson Conjecture is true in this case, the contribution from the

prime powers pj for which j ≥ 3 is O(1). Indeed, (5.1.1) gives

∑
pj≤x
j≥3

|kΛK(pj)|
pj(

1
2

+ λ
log x

+it) log pj

log(x/pj)

log x
�
∑
pj≤x
j≥3

|kΛK(pj)|
jpj/2 log p

� 1.

Let

V1 := V

(
1− 7(B − 1)

8A

)
, and V ?

1 = V2 :=
(B − 1)V

16A
.

Note that if t ∈ K(T, V ), then at least one of the following inequalities holds:

|S?1(t)| ≥ V ?
1 or |Sj(t)| ≥ Vj

for either j = 1 or j = 2. If we define

Nj(T, Vj) := meas{t ∈ [T, 2T ] : |Sj(t)| ≥ Vj}
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for j = 1, 2 and N?
1 (T, V ?

1 ) similarly, we can bound Nj(T, Vj) and N?
1 (T, V ?

1 ) using Lemma

4.2.2 since

Nj(T, Vj) ≤ (Vj)
−2`

∫ 2T

T

|Sj(t)|2`dt

and

N?
1 (T, V ?

1 ) ≤ (V ?
1 )−2`

∫ 2T

T

|S?1(t)|2`dt

for any non-negative integer `.

Let us first estimate N1(T, V1). Letting ` be any natural number such that ` ≤
V log log T

A
, Lemma 4.2.2 and (5.1.2) together with the same reasoning in the proof of Propo-

sition 4.3.1 imply that

∫ 2T

T

|S1(t)|2`dt� T
√
`

(
`W

e

)`
,

Thus we have

N1(T, V1)� T
√
`

(
`W

eV 2
1

)`
. (5.2.2)

We consider separately the two cases where V ≤ W 2

B4 and V > W 2

B4 . In the first case,

we choose ` = bV
2
1

W
c in (5.2.2) and find that

N1(T, V1)� T
V√
W

exp

(
−V

2
1

W

)
.

In the case where V > W 2

B4 , we choose ` = b10V c in (5.2.2) and find that

N1(T, V1)� T exp(−4V log V ).

Hence

N1(T, V1)� T
V√
W

exp

(
−V

2
1

W

)
+ T exp(−4V log V ) (5.2.3)

for all V .
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Next, we find an upper bound for N?
1 (T, V ?

1 ). Lemma 4.2.2 and (5.1.2) imply that for

sufficiently large T we have

∫ 2T

T

|S?1(t)|2`dt� T
{

2`k2[K : Q] log log log T
}`
,

for any natural number ` ≤ V
A

since x = TA/V . Choosing ` = bV
A
c, we have that

N?
1 (T, V ?

1 )� T exp

(
−V log V

2A

)
. (5.2.4)

Finally, we find an upper bound on N2(T, V2). First, note that

∑
p

1

p2
<

1

2
.

Since ζK(s) satisfies the Ramanujan-Petersson Conjecture, by Lemma 4.2.2 we have that

∫ 2T

T

|S2(t)|2`dt� T`!
( ∑
p≤
√
x

|kΛK(p2)|2

4p2 log2 p

)`
� T

{
`k2[K : Q]2

}`
.

Comparing this upper bound to the upper bound for
∫ 2T

T
|S?1(t)|2`dt, we conclude that

N2(T, V2)� T exp
(
− V

2A
log V

)
. (5.2.5)

The proposition now follows upon combining (5.2.3), (5.2.4), and (5.2.5) and simplifying.

5.3 The Proof of Theorem 1.5.6

We now use Proposition 5.2.1 and (5.0.1) to prove Theorem 1.5.6.
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Proof. Proposition 5.2.1 implies that

meas(K(T, V ))�


T (log T )ε exp

(
−V 2

W

)
, if 3 ≤ V ≤ 256W

B2 ,

T (log T )ε exp
(
− 4V

B2

)
, if V > 256W

B2 .

Inserting these bounds into (5.0.1) and estimating the range V < 3 trivially, we deduce

Theorem 1.5.6.
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6 THE PROOFS OF THEOREM 1.5.7 AND THEOREM 1.5.8

In this chapter we prove Theorem 1.5.7 and Theorem 1.5.8. Both results were proved

in collaboration with Micah B. Milinovich and appear in [63]. We first collect some well-

known results from complex analysis that will be used in both proofs.

6.1 Preliminary Results

We will make use of the following two results, which can be found in Chapter 5 of

the book by Montgomery and Vaughan [69].

Perron’s Formula. Let an be an arithmetic function, and let α(s) =
∑∞

n=1 ann
−s be the

corresponding Dirichlet series absolutely convergent for <(s) > σc. If σ0 > max(0, σc) and

x > 0, then ∑
n≤x

[an = lim
T→∞

1

2πi

∫ σ0+iT

σ0−iT
α(s)

xs

s
ds.

Here
∑[ indicates that if x is an integer, then the last term is to be counted with weight 1/2.

Plancherel’s Theorem. Let w(x) be a weight function. Suppose that
∫∞

0
|w(x)|x−σ−1dx <

∞, and also that
∫∞

0
|w(x)|2x−2σ−1dx <∞. Put K(s) =

∫∞
0
w(x)x−s−1dx. Then

∫ ∞
0

|w(x)|2x−2σ−1dx =
1

2π

∫ ∞
−∞
|K(σ + it)|2dt.
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6.2 The Proof of Theorem 1.5.7

We follow the proof of Theorem 1 of Selberg [80], who studied the distribution of

primes in short intervals using upper bounds for moments of the logarithmic derivative of

ζ(s) near the critical line. (See also Section 4 of Goldston, Gonek, and Montgomery [33].)

Proof. For K a finite Galois extension of Q, let

cK =
2r1(2π)r2hR

w
√
|d|

, S(x) =
∑
n≤x

rK(n), and S0(x) =
1

2
lim
ε→0

(
S(x+ε) + S(x−ε)

)

so that S(x) = S0(x) for almost all x. Perron’s Formula implies that

S0(x) =
1

2πi

∫ 2+i∞

2−i∞
ζK(s)

xs

s
ds. (6.2.1)

The Generalized Lindelöf Hypothesis for ζK(s) in t-aspect is the statement that

ζK(1
2

+ it)� tε,

where the implied constant depends on K. Assuming the Generalized Riemann Hypothesis

for ζK(s), we move the contour in (6.2.1) left from <(s) = 2 to <(s) = 1/2 passing over a

pole of the integrand at s = 1 and no other singularities. Here we are implicitly using the

Generalized Lindelöf Hypothesis for ζK(s) in t-aspect, which follows from the Generalized

Riemann Hypothesis, to justify the contour shift. Thus by the residue calculation in (1.3.1)

and a variable change, we have

S0(x)− cKx =
1

2πi

∫ 1/2+i∞

1/2−i∞
ζK(s)

xs

s
ds =

1

2π

∫ ∞
−∞

ζK(1
2
+it)

(
x

1
2

+it

1
2
+it

)
dt.
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Applying this formula twice with the values x = eτ+κ and x = eτ and then differencing, it

follows that

S0(eκ+τ )−S0(eτ )−cK(eκ−1)eτ

eτ/2
=

1

2π

∫ ∞
−∞

ζK(1
2
+it)

(
e
κ
(

1
2

+it
)
− 1

1
2

+ it

)
eiτt dt. (6.2.2)

Note that the left-hand side of (6.2.2) is a Fourier transform (appropriately normalized) of

ζK(1
2
+it)

(
e
κ
(

1
2

+it
)
− 1

1
2

+ it

)
,

so (6.2.2) gives a Fourier transform relation for all τ ∈ R. By Plancherel’s Theorem, since

S0(x) = S(x) almost everywhere, we have

∫ ∞
−∞

∣∣S(eκ+τ )−S(eτ )−cK(eκ−1)eτ
∣∣2 dτ
eτ

=
1

2π

∫ ∞
−∞

∣∣ζK(1
2
+it)

∣∣2 ∣∣∣∣∣∣e
κ
(

1
2

+it
)
−1

1
2

+ it

∣∣∣∣∣∣
2

dt.

Observing that the integrand on the left-hand side is even and letting x = eτ , X ≥

T ≥ 2, and eκ = 1 + 1/T, we derive that

∫ 2X

X

∣∣∣S(x+
x

T

)
−S(x)−cK

x

T

∣∣∣2 dx
x2
≤
∫ ∞

0

∣∣∣S(x+
x

T

)
−S(x)−cK

x

T

∣∣∣2 dx
x2

=
1

π

∫ ∞
0

∣∣ζK(1
2
+it)

∣∣2 ∣∣∣∣∣∣e
κ
(

1
2

+it
)
−1

1
2

+ it

∣∣∣∣∣∣
2

dt

=
1

π

∞∑
`=0

∫ (2`+1−1)T

(2`−1)T

∣∣ζK(1
2
+it)

∣∣2 ∣∣∣∣∣∣e
κ
(

1
2

+it
)
− 1

1
2

+ it

∣∣∣∣∣∣
2

dt

�
∞∑
`=0

1

(2`T )2

∫ (2`+1−1)T

0

∣∣ζK(1
2
+it)

∣∣2 dt.
It follows from this and Theorem 1.5.6 that

1

X2

∫ 2X

X

∣∣∣S(x+
x

T

)
−S(x)−cK

x

T

∣∣∣2 dx� ∞∑
`=0

1

2`T
(log T )[K:Q]+ε � (log T )[K:Q]+ε

T
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for any ε > 0. Theorem 1.5.7 now follows by choosing y = x/T.

6.3 The Proof of Theorem 1.5.8

We now indicate how to modify the proof of Theorem 1.5.7 to obtain Theorem 1.5.8.

The proof given here is an expanded version of the argument given in [63].

Proof. For k ≥ 0 an integer and k1, . . . , kr ∈ N, let

L(s) = ζ(s)k
r∏
j=1

L(s, πj)
kj (6.3.1)

be an automorphic L-function and let each L(s, πj) satisfy the conditions of Theorem 1.5.4.

For <(s) > 1, we set

L(s) =



∞∑
n=1

aL(n)

ns
, if k = 0,

∞∑
n=1

bL(n)

ns
, if k ∈ N.

and for x > 0, we define

RL(x) = Res
s=1

(
L(s)

xs

s

)
.

If k = 0, we see that L(s) is entire and denote

AL(x) =
∑
n≤x

aL(n).

If k ∈ N, we see that L(s) has a pole at s = 1 and denote

BL(x) =
∑
n≤x

bL(n).

79



Furthermore, let

C(x) =


1

2
lim
ε→0

(
AL(x+ ε)− AL(x− ε)

)
, if k = 0,

1

2
lim
ε→0

(
BL(x+ ε)−BL(x− ε)

)
, if k ∈ N,

so that C(x) = AL(x) (or BL(x)) for almost all x. Perron’s Formula and (6.3.1) imply that

C(x) =
1

2πi

∫ 2+i∞

2−i∞
L(s)

xs

s
ds.

Moving the line of integration left from <(s) = 2 to <(s) = 1/2, we have

C(x)−RL(x) =
1

2π

∫ ∞
−∞

L(s)

(
x

1
2

+it

1
2

+ it

)
dt.

Notice that if k = 0, then RL(s) = 0 because there is no pole. Applying this formula twice

with the values x = eτ+κ and x = eτ and then differencing, it follows that

C(eκ+τ )−C(eτ )−RL(eκ+τ )+RL(eτ )

eτ/2
=

1

2π

∫ ∞
−∞

L(1
2
+it)

(
eκ(

1
2

+it) − 1
1
2

+ it

)
eitτdt (6.3.2)

for all τ ∈ R and all κ ≥ 0. As in the proof of Theorem 1.5.6, we next apply Plancherel’s

Theorem to 6.3.2. If k = 0, then since C(x) = AL(x) almost everywhere, we find that

∫ ∞
−∞

|AL(eκ+τ )− AL(eτ )|2

eτ
dτ =

1

2π

∫ ∞
−∞

∣∣L(1
2
+it)

∣∣2 ∣∣∣∣∣eκ(
1
2

+it) − 1
1
2

+ it

∣∣∣∣∣
2

dt.

If k ∈ N, then since C(x) = BL(x) almost everywhere, we have

∫ ∞
−∞

|BL(eκ+τ )−BL(eτ )−RL(eκ+τ ) +RL(eτ )|2

eτ
dτ =

1

2π

∫ ∞
−∞

∣∣L(1
2
+it)

∣∣2 ∣∣∣∣∣eκ(
1
2

+it) − 1
1
2

+ it

∣∣∣∣∣
2

dt.
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In both cases, the integrand on the left-hand side is even. Therefore, letting x = eτ , X ≥

T ≥ 2, and eκ = 1 + 1/T, by Theorem 1.5.4 we deduce that

1

X2

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

aL(n)

∣∣∣∣∣
2

dx � (log T )k
2
1+···+k2r+ε

T

and

1

X2

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

bL(n)−
(
RL(x+y)−RL(x)

)∣∣∣∣∣
2

dx � (log T )k
2
1+···+k2r+ε

T

for any ε > 0. Theorem 1.5.8 now follows by choosing y = x/T .
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7 THE PROOF OF THEOREM 1.6.1

In this chapter, we prove Theorem 1.6.1, which is joint work with Micah B. Mili-

novich and also appears in [63]. In this case, we need to understand the behavior of the

Dirichlet series coefficients of automorphic L-functions averaged over the squares of primes.

Let L(s, π) be an L-function attached to a self-contragredient irreducible cuspidal auto-

morphic representation π of GL(m) over Q (i.e. π = π̃). The Rankin-Selberg L-function

L(s, π ⊗ π̃) = L(s, π ⊗ π) factors as the product of the symmetric and exterior square L-

functions

L(s, π ⊗ π̃) = L(s, π,∨2) · L(s, π,∧2)

and has a simple pole at s = 1, see Bump and Ginzberg [11]. This pole must be carried by

one of the factors on the right-hand side. Following [78], we denote the order of the pole of

L(s, π,∧2) as (1 + δ(π))/2. Then it is known that

∑
p≤x

Λπ(p2) ∼ −δ(π)x (7.0.1)

as x → ∞. In contrast to the proof of Theorem 1.5.4, we must assume the Ramanujan-

Petersson Conjecture in the proof of Theorem 1.6.1 to handle the contribution from the

prime squares. We restate the Ramanujan-Petersson Conjecture here for convenience.

Ramanujan-Petersson Conjecture. The local parameters αj(p) in (1.3.2) satisfy |αj(p)| =

1 for all but a finite number of primes p.
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As in the proof of Theorem 1.5.4, the starting point is the observation that

∑
|d|≤X

[
L(1

2
, π1 ⊗ χd)k1 · · ·L(1

2
, πr ⊗ χd)kr

=

∫ ∞
−∞

exp

(
V − k1δ(π1)+· · ·+krδ(πr)

2
log logX

)
N (X, V ) dV,

(7.0.2)

where N (X, V ) denotes the number of fundamental discriminants d with |d| ≤ X such that

k1 log
∣∣L(1

2
, π1 ⊗ χd)

∣∣+· · ·+kr log
∣∣L(1

2
, πr ⊗ χd)

∣∣ ≥ V −
(
k1δ(π1)+· · ·+krδ(πr)

2

)
log logX.

(7.0.3)

We can bound N (X, V ) with the following analogues of Lemmas 4.2.2 and 4.2.3. (Note that

the definition of N (X, V ) takes into account the contribution from the squares of primes in

Lemma 7.1.2, below.)

7.1 Lemmas

Lemma 7.1.1. Let X and y be real numbers and ` be a natural number with y` ≤ X1/2/ logX.

For any complex numbers b(p) we have

∑
|d|≤X

[

∣∣∣∣∣ ∑
2<p≤y

b(p)χd(p)

p1/2

∣∣∣∣∣
2`

� X
(2`)!

`!2`

(∑
p≤y

|b(p)|2

p

)
,

where the implied constant is absolute.

Proof. This is Lemma 6.3 of Soundararajan and Young [86].

Lemma 7.1.2. Let L(s, π) be an L-function attached to an irreducible cuspidal automorphic

representation π on GL(m) over Q, and let d be a fundamental discriminant. Let λ0 =

0.4912 . . . denote the unique positive real number satisfying e−λ0 = λ0+λ2
0/2. Then, assuming

the Generalized Riemann Hypothesis for L(s, π⊗χd), for all λ0 ≤ λ ≤ log x/2 and log x ≥ 2,
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we have

log
∣∣L(1

2
, π ⊗ χd)

∣∣ ≤ <{∑
n≤x

Λπ(n)χd(n)

n
1
2

+ λ
log x log n

log x/n

log x

}
+

(1 + λ)

2

m log |d|
log x

+O
( 1

log x

)
,

where the implied constant depends only on π.

Proof. This follows from Theorem 2.1 of Chandee [12].

Lemma 7.1.3. Let L(s, π) be an L-function attached to an irreducible cuspidal automorphic

representation π on GL(m) over Q, and let d be a fundamental discriminant. Then, assuming

the Ramanujan-Petersson Conjecture, we have that

∑
p2≤x

Λπ(p2)χd(p
2)

p1+ 2λ
log x log p2

= −δ(π)

2
log log x+O(log log log |d|).

Proof. Note that

∑
p2≤x

Λπ(p2)χd(p
2)

p1+ 2λ
log x log p2

=
∑
p2≤x
p-d

Λπ(p2)

p1+ 2λ
log x log p2

=
∑
p2≤x

Λπ(p2)

p1+ 2λ
log x log p2

−
∑
p2≤x
p|d

Λπ(p2)

p1+ 2λ
log x log p2

.

By (7.0.1) and partial summation, the first sum is

∑
p2≤x

Λπ(p2)

p1+ 2λ
log x log p2

∼ −δ(π)

2
log log x.

If Λπ(p2) > 0 for all p|d, then we conclude

∑
p2≤x

Λπ(p2)χd(p
2)

p1+ 2λ
log x log p2

= −δ(π)

2
log log x+O(1).
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More care is required if Λπ(p2) < 0 for some p|d. Let ω(n) denote the number of distinct

prime divisors of n. Then, by Merten’s Theorem, we have

∑
p|d

1

p
≤

∑
p≤log |d|

1

p
+

∑
log |d|≤p
p|d

1

p

≤
∑

p≤log |d|

1

p
+

1

log |d|
ω(d)

= O(log log log |d|) +O

(
1

log |d|
log |d|

log log |d|

)
= O(log log log |d|).

Thus, assuming the Ramanujan-Petersson Conjecture, it follows that

−
∑
p2≤x
p|d

Λπ(p2)

p1+ 2λ
log x log p2

� m

2

∑
p|d

1

p
� log log log |d|,

In either case, we conclude that

∑
p2≤x

Λπ(p2)χd(p
2)

p1+ 2λ
log x log p2

= −δ(π)

2
log log x+O(log log log |d|).

7.2 The Frequency of Large Values of
∏

1≤i≤k |L(1
2
, πi ⊗ χd)|

In this section, we state and prove a value distribution result for a linear combination

of distinct primitive L-functions twisted by quadratic Dirichlet characters which will be used

to prove Theorem 1.6.1.

Let χd be a primitive quadratic character of conductor |d|, and let L(s, π1),. . ., L(s, πr)

be r distinct primitive L-functions (as in Theorem 1.6.1) of degrees m1, . . . ,mr, respectively,
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and let

B = k1m1 + · · ·+ krmr + 1.

Let N (X,T ) be the set defined in (7.0.3), and let

W = (k2
1 + · · ·+ k2

r) log logX.

Proposition 7.2.1. Let d denote a fundamental discriminant, and let χd be a primitive

quadratic Dirichlet character of conductor |d|. Let L(s, π1), . . . , L(s, πr) be L-functions at-

tached to distinct self-contragredient irreducible cuspidal automorphic representations, πj,

of GL(mj) over Q each with unitary central character, and assume that the twisted L-

functions L(s, π1 ⊗ χd), . . . , L(s, πr ⊗ χd) satisfy the Generalized Riemann Hypothesis and

the Ramanujan-Petersson Conjecture. If
√
W ≤ V ≤ W

B2 , we have

meas(N (X, V ))� X exp
(
− V 2

2W

(
1− 4

logW

))
;

if W
B2 < V < 1

2B2W logW , we have

meas(N (X, V ))� X exp
(
− V 2

2W

(
1− 7B2V

4W logW

)2)
;

and if 1
2B2W logW < V , we have

meas(N (X, V ))� X exp
(
− 1

256B2
V log V

)
.

for any k1, . . . , kr > 0 when X is sufficiently large.

Proof. The proof is similar to the proof of Proposition 4.3.1. Let λ = λ0 < 1/2 and ε <

(1− 2λ0)/3. Choosing x = (logX)1−ε, it follows from Lemma 7.1.2 and (4.1.1)

log |L(1
2
, π ⊗ χd)| ≤

3m

4

logX

log logX
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for sufficiently large X. Therefore, we see that

k1 log |L(1
2
, π1 ⊗ χd)|+ · · ·+ kr log |L(1

2
, πr ⊗ χd)| ≤

3(k1m1 + · · ·+ krmr)

4

logX

log logX

when X is large. Hence, we may assume that

√
W ≤ V ≤ 3(B − 1)

4

logX

log logX

while proving the proposition. As in the proof of Proposition 4.3.1, define a parameter A as

A =



B

2
logW, if

√
W ≤ V ≤ W

B2 ,

1

2BV
W logW, if W

B2 ≤ V ≤ 1
2B2W logW,

B, if V > 1
2B2W logW,

and let x = XA/V and z = x1/ log logX . Choosing λ = 1/2 in (7.1.2), we deduce that

k1 log
∣∣L(1

2
, π1 ⊗ χd)

∣∣+ · · ·+ kr log
∣∣L(1

2
, πr ⊗ χd)

∣∣
≤ |S1(d)|+ |S?1(d)|+ <{S2(d)}+

3(B − 1)

4

V

logA
+O(1),

where

S1(d) =
∑
p≤z

(k1Λπ1(p) + · · ·+ krΛπr(p))χd(p)

p
1
2

+ λ
log x log p

log(x/p)

log x
,

S?1(d) =
∑
z<p≤x

(k1Λπ1(p) + · · ·+ krΛπr(p))χd(p)

p
1
2

+ λ
log x log p

log(x/p)

log x
,

and

S2(d) =
∑
p2≤x

(k1Λπ1(p
2) + · · ·+ krΛπr(p

2))χd(p
2)

p1+ 2λ
log x log p2

log(x/p2)

log x
.
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The contribution from the prime powers pj for which j > 2 is O(1). Indeed, the

Ramanujan-Petersson Conjecture implies that

|k1Λπ1(p
j) + · · ·+ krΛπr(p

j)| � (k1m1 + · · ·+ krmr)(log p).

Hence

∑
pj≤x
j>2

|k1Λπ1(p
j) + · · ·+ krΛπr(p

j)| |χd(pj)|
pj(

1
2

+ λ
log x

+it) log pj

log(x/pj)

log x
�
∑
pj≤x
j>2

|k1Λπ1(p
j) + · · ·+ krΛπr(p

j)|
jpj/2 log p

� (B − 1)
∑
pj≤x
j>2

1

pj/2

� 1,

since |χd(pj)| ≤ 1 for all j. Noting that |d| ≤ X, Lemma 7.1.3 together with partial

summation provides that

S2(d) = −
(
k1δ(π1) + · · ·+ krδ(πr)

2

)
log logX +O(log log logX).

Thus, we have

k1 log |L(1
2
, π1 ⊗ χd)|+ · · ·+ kr log |L(1

2
, πr ⊗ χd)|

≤ |S1(d)|+ |S?1(d)| −
(
k1δ(π1) + · · ·+ krδ(πr)

2

)
log logX

+
3(B − 1)

4

V

A
+O(log log logX).

Define

V1 := V

(
1− 7(B − 1)

8A

)
and V ?

1 :=
(B − 1)V

8A
,
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and note that if d ∈ N (X, V ), then at least one of the following inequalities holds:

|S1(d)| ≥ V1 or |S?1(d)| ≥ V ?
1 .

If we define

N1(X, V1) := meas{|d| ≤ X : |Sj(d)| ≥ V1}

and N?
1 (X, V ?

1 ) similarly, we can bound N1(X, V1) and N?
1 (X, V ?

1 ) using Lemma 7.1.1 since

Chebyshev’s inequality implies that

N1(X, Vj) ≤ (V1)−2`
∑
|d|≤X

[
|Sj(d)|2`

and

N?
1 (X, V ?

1 ) ≤ (V ?
1 )−2`

∑
|d|≤X

[
|S?1(d)|2`

for any non-negative integer `.

Let us first estimate N1(X, V1). Letting ` be any natural number such that ` ≤
log(X1/2 logX)

log z
= V log logX

2A
(1− 2 log logX

logX
), Lemma 7.1.1 and (4.3.3) imply that

∑
|d|≤X

[
|S1(t)|2` � X

(2`)!

`!2`

(∑
p≤z

|k1Λπ1(p) + · · ·+ krΛπr(p)|2

p log2 p

)`

� X

(
2`W

e

)`
.

Thus we have

N1(X, V1)� X

(
2`W

eV 2
1

)`
.

We consider separately the two cases where V ≤ W 2

B4 and V > W 2

B4 . In the first case, we

choose ` = b V
2
1

2W
c and find that

N1(X, V1)� X exp
(
− V 2

1

2W

)
.
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In the case where V > W 2

B4 , we choose ` = b10V c and find that

N1(X, V1)� X exp(−5V log V ).

Hence

N1(X, V1)� X exp
(
− V 2

1

2W

)
+X exp(−5V log V ) (7.2.1)

for all V .

Next, we find an upper bound for N?
1 (X, V ?

1 ). For any natural number ` ≤ V
2A

(1 −
log logX

logX
), Lemma 7.1.1 and (4.3.3) imply that

∑
|d|≤X

[
|S?1(d)|2` � X

(
2`(k2

1 + · · ·+ k2
r) log log logX

)`
when X is large. Choosing ` = b V

2A
− 1c, we have that

N?
1 (X, V ?

1 )� X

(
16A

(B − 1)V

)2` {
2`(k2

1 + · · ·+ k2
r) log log logX

}`
� XV −2`A2`(2` log log logX)`

� XV −V/2A+1
[
V (A log log logX)V/2A−1

]
� XV −V/4A.

Here we have used the fact that

V (A log log logX)V/2A−1 � V V/4A.

Thus,

N?
1 (X, V ?

1 )� X exp

(
− V

4A
log V

)
. (7.2.2)

The proposition now follows by combining (7.2.1) and (7.2.2).
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7.3 The Proof of Theorem 1.6.1

We now use Proposition 7.2.1 and (7.0.2) to prove Theorem 1.6.1.

Proof. Proposition 7.2.1 implies that

N (X, V )�


X (logX)ε exp

(
− V 2

2W

)
, if 3 ≤ V ≤ 512W

B2 ,

X (logX)ε exp
(
−4V
B2

)
, if V > 512W

B2 .

Theorem 1.6.1 now follows by inserting these bounds into (7.0.2).
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