Distinguishing between symplectic quotients by SU₂ using invariant theory

Christopher Seaton
Rhodes College
Department of Mathematics and Computer Science
seatonc@rhodes.edu

Joint work with Hans-Christian Herbig and Daniel Herden

Friday, September 23rd
Hume Hall 331 at 3pm

Abstract

Let K be (closed) subgroup of the group of $n \times n$ unitary matrices, considered as a group of linear transformations from \mathbb{C}^n to itself. Forgetting the complex structure on \mathbb{C}^n, the underlying real vector space isomorphic to \mathbb{R}^{2n} is an example of a symplectic manifold. The action of K admits a moment map, which in this case is a collection of quadratic polynomials, and the symplectic quotient is defined to be $X = Z/K$ where Z is the set of points on which the moment map vanishes. While X is usually singular, it has several structures, including well-defined notions of what it means for a function $X \to \mathbb{R}$ to be smooth or polynomial. The algebra $\mathbb{R}[X]$ of polynomial functions on X can be described using the real polynomial invariants associated to the group K.

We will describe methods from invariant theory that have been used to study the properties of a symplectic quotient X via $\mathbb{R}[X]$. We will in particular focus on the case $K = SU_2$, the 2×2 unitary matrices with determinant 1, and discuss recent results regarding distinguishing between symplectic quotients.